當前位置: 首頁>>代碼示例>>Python>>正文


Python imgaug.ALL屬性代碼示例

本文整理匯總了Python中imgaug.ALL屬性的典型用法代碼示例。如果您正苦於以下問題:Python imgaug.ALL屬性的具體用法?Python imgaug.ALL怎麽用?Python imgaug.ALL使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在imgaug的用法示例。


在下文中一共展示了imgaug.ALL屬性的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_augmentations

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def init_augmentations(self):
        if self.transform_probability > 0 and self.use_imgaug:
            augmentations = iaa.Sometimes(
                self.transform_probability,
                iaa.Sequential([
                    iaa.SomeOf(
                        (1, None),
                        [
                            iaa.AddToHueAndSaturation(iap.Uniform(-20, 20), per_channel=True),
                            iaa.GaussianBlur(sigma=(0, 1.0)),
                            iaa.LinearContrast((0.75, 1.0)),
                            iaa.PiecewiseAffine(scale=(0.01, 0.02), mode='edge'),
                        ],
                        random_order=True
                    ),
                    iaa.Resize(
                        {"height": (16, self.image_size.height), "width": "keep-aspect-ratio"},
                        interpolation=imgaug.ALL
                    ),
                ])
            )
        else:
            augmentations = None
        return augmentations 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:26,代碼來源:image_dataset.py

示例2: main

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def main():
    img = ia.data.quokka(size=(128, 128), extract="square")

    aug = iaa.ChannelShuffle()
    imgs_aug = aug.augment_images([img] * 64)
    ia.imshow(ia.draw_grid(imgs_aug))

    aug = iaa.ChannelShuffle(p=0.1)
    imgs_aug = aug.augment_images([img] * 64)
    ia.imshow(ia.draw_grid(imgs_aug))

    aug = iaa.ChannelShuffle(p=1.0, channels=[0, 1])
    imgs_aug = aug.augment_images([img] * 64)
    ia.imshow(ia.draw_grid(imgs_aug))

    aug = iaa.ChannelShuffle(p=1.0, channels=[1, 2])
    imgs_aug = aug.augment_images([img] * 64)
    ia.imshow(ia.draw_grid(imgs_aug))

    aug = iaa.ChannelShuffle(p=1.0, channels=[1, 1, 2])
    imgs_aug = aug.augment_images([img] * 64)
    ia.imshow(ia.draw_grid(imgs_aug))

    aug = iaa.ChannelShuffle(p=1.0, channels=ia.ALL)
    imgs_aug = aug.augment_images([img] * 64)
    ia.imshow(ia.draw_grid(imgs_aug)) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:28,代碼來源:check_channel_shuffle.py

示例3: test___init___to_colorspace_is_all

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def test___init___to_colorspace_is_all(self):
        aug = iaa.WithBrightnessChannels(to_colorspace=ia.ALL)
        assert isinstance(aug.children, iaa.Augmenter)
        assert len(aug.to_colorspace.a) == len(self.valid_colorspaces)
        for cspace in self.valid_colorspaces:
            assert cspace in aug.to_colorspace.a
        assert aug.from_colorspace == iaa.CSPACE_RGB 
開發者ID:aleju,項目名稱:imgaug,代碼行數:9,代碼來源:test_color.py

示例4: test_arg_is_all

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def test_arg_is_all(self):
        valid_values = ["class1", "class2"]

        param = iap.handle_categorical_string_param(
            ia.ALL, "foo", valid_values)

        assert is_parameter_instance(param, iap.Choice)
        assert param.a == valid_values 
開發者ID:aleju,項目名稱:imgaug,代碼行數:10,代碼來源:test_parameters.py

示例5: test_arg_is_invalid_datatype

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def test_arg_is_invalid_datatype(self):
        with self.assertRaises(Exception) as ctx:
            _ = iap.handle_categorical_string_param(
                False, "foo", ["class1"])

        expected = "Expected parameter 'foo' to be imgaug.ALL"
        assert expected in str(ctx.exception) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:9,代碼來源:test_parameters.py

示例6: test_value_is_stochastic_all_100_iter

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def test_value_is_stochastic_all_100_iter(self):
        # test ia.ALL as aggregation_method
        # note that each method individually and list of methods are already
        # tested, so no in depth test is needed here
        param = iap.IterativeNoiseAggregator(
            iap.Choice([0, 50]), iterations=100, aggregation_method=ia.ALL)

        assert isinstance(param.aggregation_method, iap.Choice)
        assert len(param.aggregation_method.a) == 3
        assert [v in param.aggregation_method.a for v in ["min", "avg", "max"]] 
開發者ID:aleju,項目名稱:imgaug,代碼行數:12,代碼來源:test_parameters.py

示例7: chapter_augmenters_cropandpad

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def chapter_augmenters_cropandpad():
    aug = iaa.CropAndPad(percent=(-0.25, 0.25))
    run_and_save_augseq(
        "cropandpad_percent.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
    )

    aug = iaa.CropAndPad(
        percent=(0, 0.2),
        pad_mode=["constant", "edge"],
        pad_cval=(0, 128)
    )
    run_and_save_augseq(
        "cropandpad_mode_cval.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.CropAndPad(
        px=((0, 30), (0, 10), (0, 30), (0, 10)),
        pad_mode=ia.ALL,
        pad_cval=(0, 128)
    )
    run_and_save_augseq(
        "cropandpad_pad_complex.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(32)], cols=8, rows=4
    )

    aug = iaa.CropAndPad(
        px=(-10, 10),
        sample_independently=False
    )
    run_and_save_augseq(
        "cropandpad_correlated.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:37,代碼來源:generate_documentation_images.py

示例8: __init__

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def __init__(self, target_size, fill_color=127, mode='letterbox',
                 border='constant', random_state=None):
        super(Resize, self).__init__(random_state=random_state)
        self.target_size = None if target_size is None else np.array(target_size)
        self.mode = mode

        import imgaug.parameters as iap
        if fill_color == imgaug.ALL:
            self.fill_color = iap.Uniform(0, 255)
        else:
            self.fill_color = iap.handle_continuous_param(
                fill_color, "fill_color", value_range=None,
                tuple_to_uniform=True, list_to_choice=True)

        self._cv2_border_type_map = {
            'constant': cv2.BORDER_CONSTANT,
            'edge': cv2.BORDER_REPLICATE,
            'linear_ramp': None,
            'maximum': None,
            'mean': None,
            'median': None,
            'minimum': None,
            'reflect': cv2.BORDER_REFLECT_101,
            'symmetric': cv2.BORDER_REFLECT,
            'wrap': cv2.BORDER_WRAP,
            cv2.BORDER_CONSTANT: cv2.BORDER_CONSTANT,
            cv2.BORDER_REPLICATE: cv2.BORDER_REPLICATE,
            cv2.BORDER_REFLECT_101: cv2.BORDER_REFLECT_101,
            cv2.BORDER_REFLECT: cv2.BORDER_REFLECT
        }
        if isinstance(border, six.string_types):
            if border == imgaug.ALL:
                border = [k for k, v in self._cv2_border_type_map.items()
                          if v is not None and isinstance(k, six.string_types)]
            else:
                border = [border]
        if isinstance(border, (list, tuple)):
            from imgaug.parameters import Choice
            border = Choice(border)
        self.border = border
        assert self.mode == 'letterbox', 'thats all folks' 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:43,代碼來源:augmenters.py

示例9: chapter_augmenters_affine

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def chapter_augmenters_affine():
    aug = iaa.Affine(scale=(0.5, 1.5))
    run_and_save_augseq(
        "affine_scale.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.Affine(scale={"x": (0.5, 1.5), "y": (0.5, 1.5)})
    run_and_save_augseq(
        "affine_scale_independently.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)})
    run_and_save_augseq(
        "affine_translate_percent.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.Affine(translate_px={"x": (-20, 20), "y": (-20, 20)})
    run_and_save_augseq(
        "affine_translate_px.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.Affine(rotate=(-45, 45))
    run_and_save_augseq(
        "affine_rotate.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.Affine(shear=(-16, 16))
    run_and_save_augseq(
        "affine_shear.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    aug = iaa.Affine(translate_percent={"x": -0.20}, mode=ia.ALL, cval=(0, 255))
    run_and_save_augseq(
        "affine_fill.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:44,代碼來源:generate_documentation_images.py

示例10: example_heavy_augmentations

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def example_heavy_augmentations():
    print("Example: Heavy Augmentations")
    import imgaug as ia
    from imgaug import augmenters as iaa

    # random example images
    images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)

    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
    st = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    seq = iaa.Sequential([
            iaa.Fliplr(0.5), # horizontally flip 50% of all images
            iaa.Flipud(0.5), # vertically flip 50% of all images
            st(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            st(iaa.GaussianBlur((0, 3.0))), # blur images with a sigma between 0 and 3.0
            st(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5)), # add gaussian noise to images
            st(iaa.Dropout((0.0, 0.1), per_channel=0.5)), # randomly remove up to 10% of the pixels
            st(iaa.Add((-10, 10), per_channel=0.5)), # change brightness of images (by -10 to 10 of original value)
            st(iaa.Multiply((0.5, 1.5), per_channel=0.5)), # change brightness of images (50-150% of original value)
            st(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)), # improve or worsen the contrast
            st(iaa.Grayscale((0.0, 1.0))), # blend with grayscale image
            st(iaa.Affine(
                scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                translate_px={"x": (-16, 16), "y": (-16, 16)}, # translate by -16 to +16 pixels (per axis)
                rotate=(-45, 45), # rotate by -45 to +45 degrees
                shear=(-16, 16), # shear by -16 to +16 degrees
                order=[0, 1], # use scikit-image's interpolation orders 0 (nearest neighbour) and 1 (bilinear)
                cval=(0, 255), # if mode is constant, use a cval between 0 and 1.0
                mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)) # apply elastic transformations with random strengths
        ],
        random_order=True # do all of the above in random order
    )

    images_aug = seq.augment_images(images)

    # -----
    # Make sure that the example really does something
    assert not np.array_equal(images, images_aug) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:48,代碼來源:test_readme_examples.py

示例11: _json_id

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import ALL [as 別名]
def _json_id(aug):
        """
        TODO:
            - [ ] submit a PR to imgaug that registers parameters with classes

        Example:
            >>> from netharn.data.transforms.augmenter_base import *
            >>> import imgaug.augmenters as iaa
            >>> import imgaug
            >>> _PA = ParamatarizedAugmenter
            >>> augment = imgaug.augmenters.Affine()
            >>> info = _PA._json_id(augment)
            >>> assert info['__class__'] == 'Affine'
            >>> assert _PA._json_id('') == ''
            >>> #####
            >>> augmentors = [
            >>>     iaa.Fliplr(p=.5),
            >>>     iaa.Flipud(p=.5),
            >>>     iaa.Affine(
            >>>         scale={"x": (1.0, 1.01), "y": (1.0, 1.01)},
            >>>         translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)},
            >>>         rotate=(-15, 15),
            >>>         shear=(-7, 7),
            >>>         order=[0, 1, 3],
            >>>         cval=(0, 255),
            >>>         mode=imgaug.ALL,  # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            >>>         # Note: currently requires imgaug master version
            >>>         backend='cv2',
            >>>     ),
            >>>     iaa.AddToHueAndSaturation((-20, 20)),  # change hue and saturation
            >>>     iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),  # improve or worsen the contrast
            >>> ]
            >>> augment = iaa.Sequential(augmentors)
            >>> info = _PA._json_id(augment)
            >>> import ubelt as ub
            >>> print(ub.repr2(info, nl=2, precision=2))
        """
        _PA = ParamatarizedAugmenter
        if isinstance(aug, tuple):
            return [_PA._json_id(item) for item in aug]
        elif isinstance(aug, imgaug.parameters.StochasticParameter):
            return str(aug)
        elif isinstance(aug, imgaug.augmenters.Augmenter):
            info = OrderedDict()
            info['__class__'] = aug.__class__.__name__
            try:
                params = _PA._hack_get_named_params(aug)
                if params:
                    info['params'] = params
                if isinstance(aug, list):
                    children = aug[:]
                    children = [ParamatarizedAugmenter._json_id(c) for c in children]
                    info['children'] = children
                return info
            except Exception as ex:
                print(ex)
                # imgaug is weird and buggy
                info['__str__'] = str(aug)
        else:
            return str(aug) 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:62,代碼來源:augmenter_base.py


注:本文中的imgaug.ALL屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。