本文整理匯總了Python中go.N屬性的典型用法代碼示例。如果您正苦於以下問題:Python go.N屬性的具體用法?Python go.N怎麽用?Python go.N使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類go
的用法示例。
在下文中一共展示了go.N屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_default_hyperparams
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def get_default_hyperparams(**overrides):
"""Returns the hyperparams for the neural net.
In other words, returns a dict whose parameters come from the AGZ
paper:
k: number of filters (AlphaGoZero used 256). We use 128 by
default for a 19x19 go board.
fc_width: Dimensionality of the fully connected linear layer
num_shared_layers: number of shared residual blocks. AGZ used both 19
and 39. Here we use 19 because it's faster to train.
l2_strength: The L2 regularization parameter.
momentum: The momentum parameter for training
"""
k = _round_power_of_two(go.N ** 2 / 3) # width of each layer
hparams = {
'k': k, # Width of each conv layer
'fc_width': 2 * k, # Width of each fully connected layer
'num_shared_layers': go.N, # Number of shared trunk layers
'l2_strength': 1e-4, # Regularization strength
'momentum': 0.9, # Momentum used in SGD
}
hparams.update(**overrides)
return hparams
示例2: incorporate_results
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def incorporate_results(self, move_probabilities, value, up_to):
assert move_probabilities.shape == (go.N * go.N + 1,)
# A finished game should not be going through this code path - should
# directly call backup_value() on the result of the game.
assert not self.position.is_game_over()
if self.is_expanded:
self.revert_visits(up_to=up_to)
return
self.is_expanded = True
self.original_prior = self.child_prior = move_probabilities
# initialize child Q as current node's value, to prevent dynamics where
# if B is winning, then B will only ever explore 1 move, because the Q
# estimation will be so much larger than the 0 of the other moves.
#
# Conversely, if W is winning, then B will explore all 362 moves before
# continuing to explore the most favorable move. This is a waste of search.
#
# The value seeded here acts as a prior, and gets averaged into Q calculations.
self.child_W = np.ones([go.N * go.N + 1], dtype=np.float32) * value
self.backup_value(value, up_to=up_to)
示例3: stone_features
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def stone_features(position):
# a bit easier to calculate it with axis 0 being the 16 board states,
# and then roll axis 0 to the end.
features = np.zeros([16, go.N, go.N], dtype=np.uint8)
num_deltas_avail = position.board_deltas.shape[0]
cumulative_deltas = np.cumsum(position.board_deltas, axis=0)
last_eight = np.tile(position.board, [8, 1, 1])
# apply deltas to compute previous board states
last_eight[1:num_deltas_avail + 1] -= cumulative_deltas
# if no more deltas are available, just repeat oldest board.
last_eight[num_deltas_avail +
1:] = last_eight[num_deltas_avail].reshape(1, go.N, go.N)
features[::2] = last_eight == position.to_play
features[1::2] = last_eight == -position.to_play
return np.rollaxis(features, 0, 3)
示例4: make_tf_example
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def make_tf_example(features, pi, value):
'''
Args:
features: [N, N, FEATURE_DIM] nparray of uint8
pi: [N * N + 1] nparray of float32
value: float
'''
return tf.train.Example(features=tf.train.Features(feature={
'x': tf.train.Feature(
bytes_list=tf.train.BytesList(
value=[features.tostring()])),
'pi': tf.train.Feature(
bytes_list=tf.train.BytesList(
value=[pi.tostring()])),
'outcome': tf.train.Feature(
float_list=tf.train.FloatList(
value=[value]))}))
# Write tf.Example to files
示例5: test_pick_moves
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def test_pick_moves(self):
player = initialize_basic_player()
root = player.root
root.child_N[coords.to_flat((2, 0))] = 10
root.child_N[coords.to_flat((1, 0))] = 5
root.child_N[coords.to_flat((3, 0))] = 1
root.position.n = go.N ** 2 # move 81, or 361, or... Endgame.
# Assert we're picking deterministically
self.assertTrue(root.position.n > player.temp_threshold)
move = player.pick_move()
self.assertEqual(move, (2, 0))
# But if we're in the early part of the game, pick randomly
root.position.n = 3
self.assertFalse(player.root.position.n > player.temp_threshold)
with mock.patch('random.random', lambda: .5):
move = player.pick_move()
self.assertEqual(move, (2, 0))
with mock.patch('random.random', lambda: .99):
move = player.pick_move()
self.assertEqual(move, (3, 0))
示例6: test_dont_pass_if_losing
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def test_dont_pass_if_losing(self):
player = initialize_almost_done_player()
# check -- white is losing.
self.assertEqual(player.root.position.score(), -0.5)
for i in range(20):
player.tree_search()
# uncomment to debug this test
# print(player.root.describe())
# Search should converge on D9 as only winning move.
flattened = coords.to_flat(coords.from_kgs('D9'))
best_move = np.argmax(player.root.child_N)
self.assertEqual(best_move, flattened)
# D9 should have a positive value
self.assertGreater(player.root.children[flattened].Q, 0)
self.assertGreaterEqual(player.root.N, 20)
# passing should be ineffective.
self.assertLess(player.root.child_Q[-1], 0)
# no virtual losses should be pending
self.assertNoPendingVirtualLosses(player.root)
# uncomment to debug this test
# print(player.root.describe())
示例7: test_only_check_game_end_once
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def test_only_check_game_end_once(self):
# When presented with a situation where the last move was a pass,
# and we have to decide whether to pass, it should be the first thing
# we check, but not more than that.
white_passed_pos = go.Position(
).play_move((3, 3) # b plays
).play_move((3, 4) # w plays
).play_move((4, 3) # b plays
).pass_move() # w passes - if B passes too, B would lose by komi.
player = MCTSPlayerMixin(DummyNet())
player.initialize_game(white_passed_pos)
# initialize the root
player.tree_search()
# explore a child - should be a pass move.
player.tree_search()
pass_move = go.N * go.N
self.assertEqual(player.root.children[pass_move].N, 1)
self.assertEqual(player.root.child_N[pass_move], 1)
player.tree_search()
# check that we didn't visit the pass node any more times.
self.assertEqual(player.root.child_N[pass_move], 1)
示例8: test_never_select_illegal_moves
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def test_never_select_illegal_moves(self):
probs = np.array([0.02] * (go.N * go.N + 1))
# let's say the NN were to accidentally put a high weight on an illegal move
probs[1] = 0.99
root = MCTSNode(SEND_TWO_RETURN_ONE)
root.incorporate_results(probs, 0, root)
# and let's say the root were visited a lot of times, which pumps up the
# action score for unvisited moves...
root.N = 100000
root.child_N[root.position.all_legal_moves()] = 10000
# this should not throw an error...
leaf = root.select_leaf()
# the returned leaf should not be the illegal move
self.assertNotEqual(leaf.fmove, 1)
# and even after injecting noise, we should still not select an illegal move
for i in range(10):
root.inject_noise()
leaf = root.select_leaf()
self.assertNotEqual(leaf.fmove, 1)
示例9: load_board
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def load_board(string):
reverse_map = {
'X': go.BLACK,
'O': go.WHITE,
'.': go.EMPTY,
'#': go.FILL,
'*': go.KO,
'?': go.UNKNOWN
}
string = re.sub(r'[^XO\.#]+', '', string)
assert len(string) == go.N ** 2, "Board to load didn't have right dimensions"
board = np.zeros([go.N, go.N], dtype=np.int8)
for i, char in enumerate(string):
np.ravel(board)[i] = reverse_map[char]
return board
示例10: make_sgf
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def make_sgf(
move_history,
result_string,
ruleset="Chinese",
komi=7.5,
white_name=PROGRAM_IDENTIFIER,
black_name=PROGRAM_IDENTIFIER,
comments=[]
):
'''Turn a game into SGF.
Doesn't handle handicap games or positions with incomplete history.
Args:
move_history: iterable of PlayerMoves
result_string: "B+R", "W+0.5", etc.
comments: iterable of string/None. Will be zipped with move_history.
'''
boardsize = go.N
game_moves = ''.join(translate_sgf_move(*z)
for z in itertools.zip_longest(move_history, comments))
result = result_string
return SGF_TEMPLATE.format(**locals())
示例11: __init__
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def __init__(self, position, fmove=None, parent=None):
if parent is None:
parent = DummyNode()
self.parent = parent
self.fmove = fmove # move that led to this position, as flattened coords
self.position = position
self.is_expanded = False
self.losses_applied = 0 # number of virtual losses on this node
# using child_() allows vectorized computation of action score.
self.illegal_moves = 1000 * (1 - self.position.all_legal_moves())
self.child_N = np.zeros([go.N * go.N + 1], dtype=np.float32)
self.child_W = np.zeros([go.N * go.N + 1], dtype=np.float32)
# save a copy of the original prior before it gets mutated by d-noise.
self.original_prior = np.zeros([go.N * go.N + 1], dtype=np.float32)
self.child_prior = np.zeros([go.N * go.N + 1], dtype=np.float32)
self.children = {} # map of flattened moves to resulting MCTSNode
示例12: select_leaf
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def select_leaf(self):
current = self
pass_move = go.N * go.N
while True:
current.N += 1
# if a node has never been evaluated, we have no basis to select a child.
if not current.is_expanded:
break
# HACK: if last move was a pass, always investigate double-pass first
# to avoid situations where we auto-lose by passing too early.
if (current.position.recent
and current.position.recent[-1].move is None
and current.child_N[pass_move] == 0):
current = current.maybe_add_child(pass_move)
continue
best_move = np.argmax(current.child_action_score)
current = current.maybe_add_child(best_move)
return current
示例13: batch_parse_tf_example
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def batch_parse_tf_example(batch_size, example_batch):
'''
Args:
example_batch: a batch of tf.Example
Returns:
A tuple (feature_tensor, dict of output tensors)
'''
features = {
'x': tf.FixedLenFeature([], tf.string),
'pi': tf.FixedLenFeature([], tf.string),
'outcome': tf.FixedLenFeature([], tf.float32),
}
parsed = tf.parse_example(example_batch, features)
x = tf.decode_raw(parsed['x'], tf.uint8)
x = tf.cast(x, tf.float32)
x = tf.reshape(x, [batch_size, go.N, go.N,
features_lib.NEW_FEATURES_PLANES])
pi = tf.decode_raw(parsed['pi'], tf.float32)
pi = tf.reshape(pi, [batch_size, go.N * go.N + 1])
outcome = parsed['outcome']
outcome.set_shape([batch_size])
return (x, {'pi_tensor': pi, 'value_tensor': outcome})
示例14: generate
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def generate(model_num):
if model_num == 0:
new_name = 'bootstrap'
elif go.N == 19:
new_name = random.choice(NAMES)
else:
new_name = petname.generate()
full_name = "%06d-%s" % (model_num, new_name)
return full_name
示例15: get_inference_input
# 需要導入模塊: import go [as 別名]
# 或者: from go import N [as 別名]
def get_inference_input():
"""Set up placeholders for input features/labels.
Returns the feature, output tensors that get passed into model_fn."""
return (tf.placeholder(tf.float32,
[None, go.N, go.N, features.NEW_FEATURES_PLANES],
name='pos_tensor'),
{'pi_tensor': tf.placeholder(tf.float32, [None, go.N * go.N + 1]),
'value_tensor': tf.placeholder(tf.float32, [None])})