本文整理匯總了Python中fast_rcnn.config.cfg.DEDUP_BOXES屬性的典型用法代碼示例。如果您正苦於以下問題:Python cfg.DEDUP_BOXES屬性的具體用法?Python cfg.DEDUP_BOXES怎麽用?Python cfg.DEDUP_BOXES使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類fast_rcnn.config.cfg
的用法示例。
在下文中一共展示了cfg.DEDUP_BOXES屬性的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_minibatch
# 需要導入模塊: from fast_rcnn.config import cfg [as 別名]
# 或者: from fast_rcnn.config.cfg import DEDUP_BOXES [as 別名]
def get_minibatch(roidb, num_classes):
"""Given a roidb, construct a minibatch sampled from it."""
num_images = len(roidb)
assert num_images == 1, 'batch size should equal to 1!'
# Sample random scales to use for each image in this batch
random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES),
size=num_images)
# Get the input image blob, formatted for caffe
im_blob, im_scales, im_shapes = _get_image_blob(roidb, random_scale_inds)
# Now, build the region of interest and label blobs
rois_blob = np.zeros((0, 5), dtype=np.float32)
labels_blob = np.zeros((0, 20), dtype=np.float32)
for im_i in xrange(num_images):
labels, im_rois = _sample_rois(roidb[im_i], num_classes)
# Add to RoIs blob
rois = _project_im_rois(im_rois, im_scales[im_i])
batch_ind = im_i * np.ones((rois.shape[0], 1))
rois_blob_this_image = np.hstack((batch_ind, rois))
if cfg.DEDUP_BOXES > 0:
v = np.array([1, 1e3, 1e6, 1e9, 1e12])
hashes = np.round(rois_blob_this_image * cfg.DEDUP_BOXES).dot(v)
_, index, inv_index = np.unique(hashes, return_index=True,
return_inverse=True)
rois_blob_this_image = rois_blob_this_image[index, :]
rois_blob = np.vstack((rois_blob, rois_blob_this_image))
# Add to labels blobs
labels_blob = np.vstack((labels_blob, labels))
blobs = {'data': im_blob,
'rois': rois_blob,
'labels': labels_blob}
return blobs
示例2: im_detect
# 需要導入模塊: from fast_rcnn.config import cfg [as 別名]
# 或者: from fast_rcnn.config.cfg import DEDUP_BOXES [as 別名]
def im_detect(net, im, boxes):
"""Detect object classes in an image given object proposals.
Arguments:
net (caffe.Net): Fast R-CNN network to use
im (ndarray): color image to test (in BGR order)
boxes (ndarray): R x 4 array of object proposals
Returns:
scores (ndarray): R x K array of object class scores (K includes
background as object category 0)
boxes (ndarray): R x (4*K) array of predicted bounding boxes
"""
blobs, unused_im_scale_factors = _get_blobs(im, boxes)
# When mapping from image ROIs to feature map ROIs, there's some aliasing
# (some distinct image ROIs get mapped to the same feature ROI).
# Here, we identify duplicate feature ROIs, so we only compute features
# on the unique subset.
for i in xrange(len(blobs['data'])):
if cfg.DEDUP_BOXES > 0:
v = np.array([1, 1e3, 1e6, 1e9, 1e12])
hashes = np.round(blobs['rois'][i] * cfg.DEDUP_BOXES).dot(v)
_, index, inv_index = np.unique(hashes, return_index=True,
return_inverse=True)
blobs['rois'][i] = blobs['rois'][i][index, :]
# reshape network inputs
net.blobs['data'].reshape(*(blobs['data'][i].shape))
net.blobs['rois'].reshape(*(blobs['rois'][i].shape))
blobs_out = net.forward(data=blobs['data'][i].astype(np.float32, copy=False),
rois=blobs['rois'][i].astype(np.float32, copy=False))
scores_tmp = blobs_out['cls_score_7_1']
if cfg.DEDUP_BOXES > 0:
# Map scores and predictions back to the original set of boxes
scores_tmp = scores_tmp[inv_index, :]
# pred_boxes = pred_boxes[inv_index, :]
if i == 0:
scores = np.copy(scores_tmp)
else:
scores += scores_tmp
pred_boxes = np.tile(boxes, (1, scores.shape[1]))
return scores, pred_boxes
示例3: im_cls
# 需要導入模塊: from fast_rcnn.config import cfg [as 別名]
# 或者: from fast_rcnn.config.cfg import DEDUP_BOXES [as 別名]
def im_cls(net, im, boxes):
"""Classify object classes in an image given object proposals.
Arguments:
net (caffe.Net): Fast R-CNN network to use
im (ndarray): color image to test (in BGR order)
boxes (ndarray): R x 4 array of object proposals
Returns:
scores (ndarray): 1 x K array of object class scores
"""
blobs, unused_im_scale_factors = _get_blobs(im, boxes)
# When mapping from image ROIs to feature map ROIs, there's some aliasing
# (some distinct image ROIs get mapped to the same feature ROI).
# Here, we identify duplicate feature ROIs, so we only compute features
# on the unique subset.
for i in xrange(len(blobs['data'])):
if cfg.DEDUP_BOXES > 0:
v = np.array([1, 1e3, 1e6, 1e9, 1e12])
hashes = np.round(blobs['rois'][i] * cfg.DEDUP_BOXES).dot(v)
_, index, inv_index = np.unique(hashes, return_index=True,
return_inverse=True)
blobs['rois'][i] = blobs['rois'][i][index, :]
# reshape network inputs
net.blobs['data'].reshape(*(blobs['data'][i].shape))
net.blobs['rois'].reshape(*(blobs['rois'][i].shape))
net.blobs['shapes'].reshape(*(blobs['shapes'][i].shape))
blobs_out = net.forward(data=blobs['data'][i].astype(np.float32, copy=False),
rois=blobs['rois'][i].astype(np.float32, copy=False),
shapes=blobs['shapes'][i].astype(np.float32, copy=False))
if i == 0:
scores = blobs_out['cls_score_7'] + blobs_out['SPMMax8_1']
# scores = blobs_out['cls_score_7']
else:
scores = np.vstack((scores, blobs_out['cls_score_7'] + blobs_out['SPMMax8_1']))
# scores = np.vstack((scores, blobs_out['cls_score_7']))
return scores