本文整理匯總了Python中faiss.METRIC_L2屬性的典型用法代碼示例。如果您正苦於以下問題:Python faiss.METRIC_L2屬性的具體用法?Python faiss.METRIC_L2怎麽用?Python faiss.METRIC_L2使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類faiss
的用法示例。
在下文中一共展示了faiss.METRIC_L2屬性的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_approximate_index
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def _build_approximate_index(self,
data: np.ndarray):
dimensionality = data.shape[1]
nlist = 100 if data.shape[0] > 100 else 2
if self.kernel_name in {'rbf'}:
quantizer = faiss.IndexFlatL2(dimensionality)
cpu_index_flat = faiss.IndexIVFFlat(quantizer, dimensionality, nlist, faiss.METRIC_L2)
else:
quantizer = faiss.IndexFlatIP(dimensionality)
cpu_index_flat = faiss.IndexIVFFlat(quantizer, dimensionality, nlist)
gpu_index_ivf = faiss.index_cpu_to_gpu(self.resource, 0, cpu_index_flat)
gpu_index_ivf.train(data)
gpu_index_ivf.add(data)
self.index = gpu_index_ivf
示例2: train_index
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def train_index(data, quantizer_path, trained_index_path, fine_quant='SQ8', cuda=False):
quantizer = faiss.read_index(quantizer_path)
if fine_quant == 'SQ8':
trained_index = faiss.IndexIVFScalarQuantizer(quantizer, quantizer.d, quantizer.ntotal, faiss.METRIC_L2)
elif fine_quant.startswith('PQ'):
m = int(fine_quant[2:])
trained_index = faiss.IndexIVFPQ(quantizer, quantizer.d, quantizer.ntotal, m, 8)
else:
raise ValueError(fine_quant)
if cuda:
if fine_quant.startswith('PQ'):
print('PQ not supported on GPU; keeping CPU.')
else:
res = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(res, 0, trained_index)
gpu_index.train(data)
trained_index = faiss.index_gpu_to_cpu(gpu_index)
else:
trained_index.train(data)
faiss.write_index(trained_index, trained_index_path)
示例3: __init__
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def __init__(self, cell_size=20, nr_cells=1024, K=4, num_lists=32, probes=32, res=None, train=None, gpu_id=-1):
super(FAISSIndex, self).__init__()
self.cell_size = cell_size
self.nr_cells = nr_cells
self.probes = probes
self.K = K
self.num_lists = num_lists
self.gpu_id = gpu_id
# BEWARE: if this variable gets deallocated, FAISS crashes
self.res = res if res else faiss.StandardGpuResources()
self.res.setTempMemoryFraction(0.01)
if self.gpu_id != -1:
self.res.initializeForDevice(self.gpu_id)
nr_samples = self.nr_cells * 100 * self.cell_size
train = train if train is not None else T.randn(self.nr_cells * 100, self.cell_size)
self.index = faiss.GpuIndexIVFFlat(self.res, self.cell_size, self.num_lists, faiss.METRIC_L2)
self.index.setNumProbes(self.probes)
self.train(train)
示例4: fit
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def fit(self, X):
if self._metric == 'angular':
X = sklearn.preprocessing.normalize(X, axis=1, norm='l2')
if X.dtype != numpy.float32:
X = X.astype(numpy.float32)
self.quantizer = faiss.IndexFlatL2(X.shape[1])
index = faiss.IndexIVFFlat(
self.quantizer, X.shape[1], self._n_list, faiss.METRIC_L2)
index.train(X)
index.add(X)
self.index = index
示例5: fit
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def fit(self, X):
X = X.astype(numpy.float32)
self._index = faiss.GpuIndexIVFFlat(self._res, len(X[0]), self._n_bits,
faiss.METRIC_L2)
# self._index = faiss.index_factory(len(X[0]),
# "IVF%d,Flat" % self._n_bits)
# co = faiss.GpuClonerOptions()
# co.useFloat16 = True
# self._index = faiss.index_cpu_to_gpu(self._res, 0,
# self._index, co)
self._index.train(X)
self._index.add(X)
self._index.setNumProbes(self._n_probes)
示例6: _faiss_knn
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def _faiss_knn(keys: torch.Tensor,
queries: torch.Tensor,
num_neighbors: int,
distance: str) -> Tuple[torch.Tensor, torch.Tensor]:
# https://github.com/facebookresearch/XLM/blob/master/src/model/memory/utils.py
if not is_faiss_available():
raise RuntimeError("faiss_knn requires faiss-gpu")
import faiss
assert distance in ['dot_product', 'l2']
assert keys.size(1) == queries.size(1)
metric = faiss.METRIC_INNER_PRODUCT if distance == 'dot_product' else faiss.METRIC_L2
k_ptr = _tensor_to_ptr(keys)
q_ptr = _tensor_to_ptr(queries)
scores = keys.new_zeros((queries.size(0), num_neighbors), dtype=torch.float32)
indices = keys.new_zeros((queries.size(0), num_neighbors), dtype=torch.int64)
s_ptr = _tensor_to_ptr(scores)
i_ptr = _tensor_to_ptr(indices)
faiss.bruteForceKnn(FAISS_RES, metric,
k_ptr, True, keys.size(0),
q_ptr, True, queries.size(0),
queries.size(1), num_neighbors, s_ptr, i_ptr)
return scores, indices
示例7: execute
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import METRIC_L2 [as 別名]
def execute(cls, ctx, op):
(y,), device_id, xp = as_same_device(
[ctx[op.input.key]], device=op.device, ret_extra=True)
indexes = [_load_index(ctx, op, ctx[index.key], device_id)
for index in op.inputs[1:]]
with device(device_id):
y = xp.ascontiguousarray(y, dtype=np.float32)
if len(indexes) == 1:
index = indexes[0]
else:
index = faiss.IndexShards(indexes[0].d)
[index.add_shard(ind) for ind in indexes]
if op.metric == 'cosine':
# faiss does not support cosine distances directly,
# data needs to be normalize before searching,
# refer to:
# https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance
faiss.normalize_L2(y)
if op.nprobe is not None:
index.nprobe = op.nprobe
if device_id >= 0: # pragma: no cover
n = y.shape[0]
k = op.n_neighbors
distances = xp.empty((n, k), dtype=xp.float32)
indices = xp.empty((n, k), dtype=xp.int64)
index.search_c(n, _swig_ptr_from_cupy_float32_array(y),
k, _swig_ptr_from_cupy_float32_array(distances),
_swig_ptr_from_cupy_int64_array(indices))
else:
distances, indices = index.search(y, op.n_neighbors)
if op.return_distance:
if index.metric_type == faiss.METRIC_L2:
# make it equivalent to `pairwise.euclidean_distances`
distances = xp.sqrt(distances, out=distances)
elif op.metric == 'cosine':
# make it equivalent to `pairwise.cosine_distances`
distances = xp.subtract(1, distances, out=distances)
ctx[op.outputs[0].key] = distances
ctx[op.outputs[-1].key] = indices