本文整理匯總了Python中facenet.RANDOM_CROP屬性的典型用法代碼示例。如果您正苦於以下問題:Python facenet.RANDOM_CROP屬性的具體用法?Python facenet.RANDOM_CROP怎麽用?Python facenet.RANDOM_CROP使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類facenet
的用法示例。
在下文中一共展示了facenet.RANDOM_CROP屬性的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: feature_encode
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import RANDOM_CROP [as 別名]
def feature_encode(sess, image_paths, batch_size):
# Run forward pass to calculate embeddings
#print('Runnning forward pass on LFW images')
use_flipped_images = False
use_fixed_image_standardization = False
use_random_rotate = False
use_radnom_crop = False
# Enqueue one epoch of image paths and labels
nrof_embeddings = len(image_paths) # nrof_pairs * nrof_images_per_pair
nrof_flips = 2 if use_flipped_images else 1
nrof_images = nrof_embeddings * nrof_flips
labels_array = np.expand_dims(np.arange(0,nrof_images),1)
image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
control_array = np.zeros_like(labels_array, np.int32)
if use_fixed_image_standardization:
control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
if use_flipped_images:
# Flip every second image
control_array += (labels_array % 2)*facenet.FLIP
if use_random_rotate:
control_array += facenet.RANDOM_ROTATE
if use_radnom_crop:
control_array += facenet.RANDOM_CROP
sess.run(eval_enqueue_op, {image_paths_placeholder: image_paths_array,
labels_placeholder: labels_array, control_placeholder: control_array})
embedding_size = int(embeddings.get_shape()[1])
assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
nrof_batches = nrof_images // batch_size
emb_array = np.zeros((nrof_images, embedding_size))
lab_array = np.zeros((nrof_images,))
for i in range(nrof_batches):
feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
emb, lab = sess.run([embeddings, label_batch], feed_dict=feed_dict)
lab_array[lab] = lab
emb_array[lab, :] = emb
if i % 10 == 9:
print('.', end='')
sys.stdout.flush()
#import pdb; pdb.set_trace()
#np.savetxt("emb_array.csv", emb_array, delimiter=",")
return emb_array
示例2: feature_encode
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import RANDOM_CROP [as 別名]
def feature_encode(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder,
batch_size_placeholder, control_placeholder, embeddings, labels, image_paths,
batch_size, distance_metric):
# Run forward pass to calculate embeddings
#print('Runnning forward pass on LFW images')
use_flipped_images = False
use_fixed_image_standardization = False
use_random_rotate = False
use_radnom_crop = False
# Enqueue one epoch of image paths and labels
nrof_embeddings = len(image_paths) # nrof_pairs * nrof_images_per_pair
nrof_flips = 2 if use_flipped_images else 1
nrof_images = nrof_embeddings * nrof_flips
labels_array = np.expand_dims(np.arange(0,nrof_images),1)
image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
control_array = np.zeros_like(labels_array, np.int32)
if use_fixed_image_standardization:
control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
if use_flipped_images:
# Flip every second image
control_array += (labels_array % 2)*facenet.FLIP
if use_random_rotate:
control_array += facenet.RANDOM_ROTATE
if use_radnom_crop:
control_array += facenet.RANDOM_CROP
sess.run(enqueue_op, {image_paths_placeholder: image_paths_array,
labels_placeholder: labels_array, control_placeholder: control_array})
embedding_size = int(embeddings.get_shape()[1])
assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
nrof_batches = nrof_images // batch_size
emb_array = np.zeros((nrof_images, embedding_size))
lab_array = np.zeros((nrof_images,))
for i in range(nrof_batches):
feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
lab_array[lab] = lab
emb_array[lab, :] = emb
if i % 10 == 9:
print('.', end='')
sys.stdout.flush()
#import pdb; pdb.set_trace()
#np.savetxt("emb_array.csv", emb_array, delimiter=",")
return emb_array
示例3: feature_encode
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import RANDOM_CROP [as 別名]
def feature_encode(sess, image_paths, batch_size):
# Run forward pass to calculate embeddings
#print('Runnning forward pass on LFW images')
use_flipped_images = False
use_fixed_image_standardization = False
use_random_rotate = False
use_radnom_crop = False
# Enqueue one epoch of image paths and labels
nrof_embeddings = len(image_paths) # nrof_pairs * nrof_images_per_pair
nrof_flips = 2 if use_flipped_images else 1
nrof_images = nrof_embeddings * nrof_flips
labels_array = np.expand_dims(np.arange(0,nrof_images),1)
image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
control_array = np.zeros_like(labels_array, np.int32)
if use_fixed_image_standardization:
control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
if use_flipped_images:
# Flip every second image
control_array += (labels_array % 2)*facenet.FLIP
if use_random_rotate:
control_array += facenet.RANDOM_ROTATE
if use_radnom_crop:
control_array += facenet.RANDOM_CROP
sess.run(eval_enqueue_op, {image_paths_placeholder: image_paths_array,
labels_placeholder: labels_array, control_placeholder: control_array})
embedding_size = int(embeddings.get_shape()[1])
assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
nrof_batches = nrof_images // batch_size
emb_array = np.zeros((nrof_images, embedding_size))
lab_array = np.zeros((nrof_images,))
for i in range(nrof_batches):
feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
emb, lab = sess.run([embeddings, label_batch], feed_dict=feed_dict)
lab_array[lab] = lab
emb_array[lab, :] = emb
if i % 10 == 9:
# print('.', end='')
sys.stdout.flush()
#import pdb; pdb.set_trace()
#np.savetxt("emb_array.csv", emb_array, delimiter=",")
return emb_array
示例4: evaluate
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import RANDOM_CROP [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
embeddings, labels, image_paths, batch_size, distance_metric):
# Run forward pass to calculate embeddings
#print('Runnning forward pass on LFW images')
use_flipped_images = False
use_fixed_image_standardization = False
use_random_rotate = True
use_radnom_crop = True
# Enqueue one epoch of image paths and labels
nrof_embeddings = len(image_paths) # nrof_pairs * nrof_images_per_pair
nrof_flips = 2 if use_flipped_images else 1
nrof_images = nrof_embeddings * nrof_flips
labels_array = np.expand_dims(np.arange(0,nrof_images),1)
image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
control_array = np.zeros_like(labels_array, np.int32)
if use_fixed_image_standardization:
control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
if use_flipped_images:
# Flip every second image
control_array += (labels_array % 2)*facenet.FLIP
if use_random_rotate:
control_array += facenet.RANDOM_ROTATE
if use_radnom_crop:
control_array += facenet.RANDOM_CROP
sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
embedding_size = int(embeddings.get_shape()[1])
assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
nrof_batches = nrof_images // batch_size
emb_array = np.zeros((nrof_images, embedding_size))
lab_array = np.zeros((nrof_images,))
for i in range(nrof_batches):
feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
lab_array[lab] = lab
emb_array[lab, :] = emb
if i % 10 == 9:
print('.', end='')
sys.stdout.flush()
#import pdb; pdb.set_trace()
#np.savetxt("emb_array.csv", emb_array, delimiter=",")
return emb_array
示例5: evaluate
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import RANDOM_CROP [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
embeddings, labels, image_paths, batch_size, distance_metric):
# Run forward pass to calculate embeddings
#print('Runnning forward pass on LFW images')
use_flipped_images = False
use_fixed_image_standardization = False
use_random_rotate = False
use_radnom_crop = False
# Enqueue one epoch of image paths and labels
nrof_embeddings = len(image_paths) # nrof_pairs * nrof_images_per_pair
nrof_flips = 2 if use_flipped_images else 1
nrof_images = nrof_embeddings * nrof_flips
labels_array = np.expand_dims(np.arange(0,nrof_images),1)
image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
control_array = np.zeros_like(labels_array, np.int32)
if use_fixed_image_standardization:
control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
if use_flipped_images:
# Flip every second image
control_array += (labels_array % 2)*facenet.FLIP
if use_random_rotate:
control_array += facenet.RANDOM_ROTATE
if use_radnom_crop:
control_array += facenet.RANDOM_CROP
sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
embedding_size = int(embeddings.get_shape()[1])
assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
nrof_batches = nrof_images // batch_size
emb_array = np.zeros((nrof_images, embedding_size))
lab_array = np.zeros((nrof_images,))
for i in range(nrof_batches):
feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
lab_array[lab] = lab
emb_array[lab, :] = emb
if i % 10 == 9:
print('.', end='')
sys.stdout.flush()
#import pdb; pdb.set_trace()
#np.savetxt("emb_array.csv", emb_array, delimiter=",")
return emb_array
示例6: train
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import RANDOM_CROP [as 別名]
def train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder,
learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, step,
loss, train_op, summary_op, summary_writer, reg_losses, learning_rate_schedule_file,
stat, cross_entropy_mean, accuracy,
learning_rate, prelogits, prelogits_center_loss, random_rotate, random_crop, random_flip, prelogits_norm, prelogits_hist_max, use_fixed_image_standardization):
batch_number = 0
if args.learning_rate>0.0:
lr = args.learning_rate
else:
lr = facenet.get_learning_rate_from_file(learning_rate_schedule_file, epoch)
if lr<=0:
return False
index_epoch = sess.run(index_dequeue_op)
label_epoch = np.array(label_list)[index_epoch]
image_epoch = np.array(image_list)[index_epoch]
# Enqueue one epoch of image paths and labels
labels_array = np.expand_dims(np.array(label_epoch),1)
image_paths_array = np.expand_dims(np.array(image_epoch),1)
control_value = facenet.RANDOM_ROTATE * random_rotate + facenet.RANDOM_CROP * random_crop + facenet.RANDOM_FLIP * random_flip + facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization
control_array = np.ones_like(labels_array) * control_value
sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
# Training loop
train_time = 0
while batch_number < args.epoch_size:
start_time = time.time()
feed_dict = {learning_rate_placeholder: lr, phase_train_placeholder:True, batch_size_placeholder:args.batch_size}
tensor_list = [loss, train_op, step, reg_losses, prelogits, cross_entropy_mean, learning_rate, prelogits_norm, accuracy, prelogits_center_loss]
if batch_number % 100 == 0:
loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_, summary_str = sess.run(tensor_list + [summary_op], feed_dict=feed_dict)
summary_writer.add_summary(summary_str, global_step=step_)
else:
loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_ = sess.run(tensor_list, feed_dict=feed_dict)
duration = time.time() - start_time
stat['loss'][step_-1] = loss_
stat['center_loss'][step_-1] = center_loss_
stat['reg_loss'][step_-1] = np.sum(reg_losses_)
stat['xent_loss'][step_-1] = cross_entropy_mean_
stat['prelogits_norm'][step_-1] = prelogits_norm_
stat['learning_rate'][epoch-1] = lr_
stat['accuracy'][step_-1] = accuracy_
stat['prelogits_hist'][epoch-1,:] += np.histogram(np.minimum(np.abs(prelogits_), prelogits_hist_max), bins=1000, range=(0.0, prelogits_hist_max))[0]
duration = time.time() - start_time
print('Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f\tXent %2.3f\tRegLoss %2.3f\tAccuracy %2.3f\tLr %2.5f\tCl %2.3f' %
(epoch, batch_number+1, args.epoch_size, duration, loss_, cross_entropy_mean_, np.sum(reg_losses_), accuracy_, lr_, center_loss_))
batch_number += 1
train_time += duration
# Add validation loss and accuracy to summary
summary = tf.Summary()
#pylint: disable=maybe-no-member
summary.value.add(tag='time/total', simple_value=train_time)
summary_writer.add_summary(summary, global_step=step_)
return True