當前位置: 首頁>>代碼示例>>Python>>正文


Python facenet.FIXED_STANDARDIZATION屬性代碼示例

本文整理匯總了Python中facenet.FIXED_STANDARDIZATION屬性的典型用法代碼示例。如果您正苦於以下問題:Python facenet.FIXED_STANDARDIZATION屬性的具體用法?Python facenet.FIXED_STANDARDIZATION怎麽用?Python facenet.FIXED_STANDARDIZATION使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在facenet的用法示例。


在下文中一共展示了facenet.FIXED_STANDARDIZATION屬性的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: validate

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def validate(args, sess, epoch, image_list, label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder,
             phase_train_placeholder, batch_size_placeholder, 
             stat, loss, regularization_losses, cross_entropy_mean, accuracy, validate_every_n_epochs, use_fixed_image_standardization):
  
    print('Running forward pass on validation set')

    nrof_batches = len(label_list) // args.lfw_batch_size
    nrof_images = nrof_batches * args.lfw_batch_size
    
    # Enqueue one epoch of image paths and labels
    labels_array = np.expand_dims(np.array(label_list[:nrof_images]),1)
    image_paths_array = np.expand_dims(np.array(image_list[:nrof_images]),1)
    control_array = np.ones_like(labels_array, np.int32)*facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})

    loss_array = np.zeros((nrof_batches,), np.float32)
    xent_array = np.zeros((nrof_batches,), np.float32)
    accuracy_array = np.zeros((nrof_batches,), np.float32)

    # Training loop
    start_time = time.time()
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:args.lfw_batch_size}
        loss_, cross_entropy_mean_, accuracy_ = sess.run([loss, cross_entropy_mean, accuracy], feed_dict=feed_dict)
        loss_array[i], xent_array[i], accuracy_array[i] = (loss_, cross_entropy_mean_, accuracy_)
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')

    duration = time.time() - start_time

    val_index = (epoch-1)//validate_every_n_epochs
    stat['val_loss'][val_index] = np.mean(loss_array)
    stat['val_xent_loss'][val_index] = np.mean(xent_array)
    stat['val_accuracy'][val_index] = np.mean(accuracy_array)

    print('Validation Epoch: %d\tTime %.3f\tLoss %2.3f\tXent %2.3f\tAccuracy %2.3f' %
          (epoch, duration, np.mean(loss_array), np.mean(xent_array), np.mean(accuracy_array))) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:41,代碼來源:train_softmax.py

示例2: feature_encode

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def feature_encode(sess, image_paths, batch_size):

    # Run forward pass to calculate embeddings
    #print('Runnning forward pass on LFW images')

    use_flipped_images = False
    use_fixed_image_standardization = False
    use_random_rotate = False
    use_radnom_crop = False
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(image_paths)  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)

    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    if use_random_rotate:
        control_array += facenet.RANDOM_ROTATE
    if use_radnom_crop:
        control_array += facenet.RANDOM_CROP

    sess.run(eval_enqueue_op, {image_paths_placeholder: image_paths_array, 
                      labels_placeholder: labels_array, control_placeholder: control_array})

    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, label_batch], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    #import pdb; pdb.set_trace()
    #np.savetxt("emb_array.csv", emb_array, delimiter=",")
    return emb_array 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:48,代碼來源:tracklet_utils_3d_online.py

示例3: feature_encode

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def feature_encode(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, 
                   batch_size_placeholder, control_placeholder, embeddings, labels, image_paths, 
                   batch_size, distance_metric):

    # Run forward pass to calculate embeddings
    #print('Runnning forward pass on LFW images')

    use_flipped_images = False
    use_fixed_image_standardization = False
    use_random_rotate = False
    use_radnom_crop = False
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(image_paths)  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)

    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    if use_random_rotate:
        control_array += facenet.RANDOM_ROTATE
    if use_radnom_crop:
        control_array += facenet.RANDOM_CROP

    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, 
                      labels_placeholder: labels_array, control_placeholder: control_array})

    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    #import pdb; pdb.set_trace()
    #np.savetxt("emb_array.csv", emb_array, delimiter=",")
    return emb_array 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:50,代碼來源:tracklet_utils_3c.py

示例4: feature_encode

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def feature_encode(sess, image_paths, batch_size):

    # Run forward pass to calculate embeddings
    #print('Runnning forward pass on LFW images')

    use_flipped_images = False
    use_fixed_image_standardization = False
    use_random_rotate = False
    use_radnom_crop = False
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(image_paths)  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)

    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    if use_random_rotate:
        control_array += facenet.RANDOM_ROTATE
    if use_radnom_crop:
        control_array += facenet.RANDOM_CROP

    sess.run(eval_enqueue_op, {image_paths_placeholder: image_paths_array, 
                      labels_placeholder: labels_array, control_placeholder: control_array})

    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, label_batch], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            # print('.', end='')
            sys.stdout.flush()
    #import pdb; pdb.set_trace()
    #np.savetxt("emb_array.csv", emb_array, delimiter=",")
    return emb_array 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:48,代碼來源:tracklet_utils_2d_online.py

示例5: evaluate

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, 
        embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, log_dir, step, summary_writer, stat, epoch, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(actual_issame)*2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    _, _, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
    
    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir,'lfw_result.txt'),'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
    stat['lfw_accuracy'][epoch-1] = np.mean(accuracy)
    stat['lfw_valrate'][epoch-1] = val 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:61,代碼來源:train_softmax.py

示例6: evaluate

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
        embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization):
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(actual_issame)*2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
        #import pdb; pdb.set_trace()
    print('')
    
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
    
    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    
    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:55,代碼來源:validate_on_lfw.py

示例7: evaluate

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
        embeddings, labels, image_paths, batch_size, distance_metric):
    # Run forward pass to calculate embeddings
    #print('Runnning forward pass on LFW images')
    
    use_flipped_images = False
    use_fixed_image_standardization = False
    use_random_rotate = True
    use_radnom_crop = True
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(image_paths)  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    if use_random_rotate:
        control_array += facenet.RANDOM_ROTATE
    if use_radnom_crop:
        control_array += facenet.RANDOM_CROP
        
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    #import pdb; pdb.set_trace()
    #np.savetxt("emb_array.csv", emb_array, delimiter=",")
    return emb_array 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:47,代碼來源:train_cnn_trajectory_3d.py

示例8: evaluate

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
        embeddings, labels, image_paths, batch_size, distance_metric):
    # Run forward pass to calculate embeddings
    #print('Runnning forward pass on LFW images')
    
    use_flipped_images = False
    use_fixed_image_standardization = False
    use_random_rotate = False
    use_radnom_crop = False
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(image_paths)  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    if use_random_rotate:
        control_array += facenet.RANDOM_ROTATE
    if use_radnom_crop:
        control_array += facenet.RANDOM_CROP
        
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    #import pdb; pdb.set_trace()
    #np.savetxt("emb_array.csv", emb_array, delimiter=",")
    return emb_array 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:47,代碼來源:train_cnn_trajectory_2d.py

示例9: train

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, 
      learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, step, 
      loss, train_op, summary_op, summary_writer, reg_losses, learning_rate_schedule_file, 
      stat, cross_entropy_mean, accuracy, 
      learning_rate, prelogits, prelogits_center_loss, random_rotate, random_crop, random_flip, prelogits_norm, prelogits_hist_max, use_fixed_image_standardization):
    batch_number = 0
    
    if args.learning_rate>0.0:
        lr = args.learning_rate
    else:
        lr = facenet.get_learning_rate_from_file(learning_rate_schedule_file, epoch)
        
    if lr<=0:
        return False 

    index_epoch = sess.run(index_dequeue_op)
    label_epoch = np.array(label_list)[index_epoch]
    image_epoch = np.array(image_list)[index_epoch]
    
    # Enqueue one epoch of image paths and labels
    labels_array = np.expand_dims(np.array(label_epoch),1)
    image_paths_array = np.expand_dims(np.array(image_epoch),1)
    control_value = facenet.RANDOM_ROTATE * random_rotate + facenet.RANDOM_CROP * random_crop + facenet.RANDOM_FLIP * random_flip + facenet.FIXED_STANDARDIZATION * use_fixed_image_standardization
    control_array = np.ones_like(labels_array) * control_value
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})

    # Training loop
    train_time = 0
    while batch_number < args.epoch_size:
        start_time = time.time()
        feed_dict = {learning_rate_placeholder: lr, phase_train_placeholder:True, batch_size_placeholder:args.batch_size}
        tensor_list = [loss, train_op, step, reg_losses, prelogits, cross_entropy_mean, learning_rate, prelogits_norm, accuracy, prelogits_center_loss]
        if batch_number % 100 == 0:
            loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_, summary_str = sess.run(tensor_list + [summary_op], feed_dict=feed_dict)
            summary_writer.add_summary(summary_str, global_step=step_)
        else:
            loss_, _, step_, reg_losses_, prelogits_, cross_entropy_mean_, lr_, prelogits_norm_, accuracy_, center_loss_ = sess.run(tensor_list, feed_dict=feed_dict)
         
        duration = time.time() - start_time
        stat['loss'][step_-1] = loss_
        stat['center_loss'][step_-1] = center_loss_
        stat['reg_loss'][step_-1] = np.sum(reg_losses_)
        stat['xent_loss'][step_-1] = cross_entropy_mean_
        stat['prelogits_norm'][step_-1] = prelogits_norm_
        stat['learning_rate'][epoch-1] = lr_
        stat['accuracy'][step_-1] = accuracy_
        stat['prelogits_hist'][epoch-1,:] += np.histogram(np.minimum(np.abs(prelogits_), prelogits_hist_max), bins=1000, range=(0.0, prelogits_hist_max))[0]
        
        duration = time.time() - start_time
        print('Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f\tXent %2.3f\tRegLoss %2.3f\tAccuracy %2.3f\tLr %2.5f\tCl %2.3f' %
              (epoch, batch_number+1, args.epoch_size, duration, loss_, cross_entropy_mean_, np.sum(reg_losses_), accuracy_, lr_, center_loss_))
        batch_number += 1
        train_time += duration
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='time/total', simple_value=train_time)
    summary_writer.add_summary(summary, global_step=step_)
    return True 
開發者ID:cjekel,項目名稱:tindetheus,代碼行數:61,代碼來源:train_softmax.py

示例10: evaluate

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import FIXED_STANDARDIZATION [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
        embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization):
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(actual_issame)*2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
    
    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    
    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:cjekel,項目名稱:tindetheus,代碼行數:53,代碼來源:validate_on_lfw.py


注:本文中的facenet.FIXED_STANDARDIZATION屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。