本文整理匯總了Python中deeplab.common.LABEL屬性的典型用法代碼示例。如果您正苦於以下問題:Python common.LABEL屬性的具體用法?Python common.LABEL怎麽用?Python common.LABEL使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類deeplab.common
的用法示例。
在下文中一共展示了common.LABEL屬性的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testPascalVocSegTestData
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def testPascalVocSegTestData(self):
dataset = data_generator.Dataset(
dataset_name='pascal_voc_seg',
split_name='val',
dataset_dir=
'deeplab/testing/pascal_voc_seg',
batch_size=1,
crop_size=[3, 3], # Use small size for testing.
min_resize_value=3,
max_resize_value=3,
resize_factor=None,
min_scale_factor=0.01,
max_scale_factor=2.0,
scale_factor_step_size=0.25,
is_training=False,
model_variant='mobilenet_v2')
self.assertAllEqual(dataset.num_of_classes, 21)
self.assertAllEqual(dataset.ignore_label, 255)
num_of_images = 3
with self.test_session() as sess:
iterator = dataset.get_one_shot_iterator()
for i in range(num_of_images):
batch = iterator.get_next()
batch, = sess.run([batch])
image_attributes = _get_attributes_of_image(i)
self.assertAllEqual(batch[common.IMAGE][0], image_attributes.image)
self.assertAllEqual(batch[common.LABEL][0], image_attributes.label)
self.assertEqual(batch[common.HEIGHT][0], image_attributes.height)
self.assertEqual(batch[common.WIDTH][0], image_attributes.width)
self.assertEqual(batch[common.IMAGE_NAME][0],
image_attributes.image_name)
# All data have been read.
with self.assertRaisesRegexp(tf.errors.OutOfRangeError, ''):
sess.run([iterator.get_next()])
示例2: _log_summaries
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _log_summaries(input_image, label, num_of_classes, output):
"""Logs the summaries for the model.
Args:
input_image: Input image of the model. Its shape is [batch_size, height,
width, channel].
label: Label of the image. Its shape is [batch_size, height, width].
num_of_classes: The number of classes of the dataset.
output: Output of the model. Its shape is [batch_size, height, width].
"""
# Add summaries for model variables.
for model_var in tf.model_variables():
tf.summary.histogram(model_var.op.name, model_var)
# Add summaries for images, labels, semantic predictions.
if FLAGS.save_summaries_images:
tf.summary.image('samples/%s' % common.IMAGE, input_image)
# Scale up summary image pixel values for better visualization.
pixel_scaling = max(1, 255 // num_of_classes)
summary_label = tf.cast(label * pixel_scaling, tf.uint8)
tf.summary.image('samples/%s' % common.LABEL, summary_label)
predictions = tf.expand_dims(tf.argmax(output, 3), -1)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
tf.summary.image('samples/%s' % common.OUTPUT_TYPE, summary_predictions)
示例3: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _build_deeplab(self, inputs_queue, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue: A prefetch queue for images and labels.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
"""
training_configs = self.training_configs
samples = inputs_queue.dequeue()
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=training_configs['learning_params']['train_crop_size'],
atrous_rates=training_configs['fine_tuning_params']['atrous_rates'],
output_stride=training_configs['fine_tuning_params']['output_stride'])
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=training_configs['common']['image_pyramid'],
weight_decay=training_configs['learning_params']['weight_decay'],
is_training=True,
fine_tune_batch_norm=training_configs['fine_tuning_params']['fine_tune_batch_norm'])
for output, num_classes in outputs_to_num_classes.items():
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=training_configs['learning_params']['upsample_logits'],
scope=output)
return outputs_to_scales_to_logits
示例4: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _build_deeplab(inputs_queue, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue: A prefetch queue for images and labels.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
"""
samples = inputs_queue.dequeue()
# add name to input and label nodes so we can add to summary
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name = common.IMAGE)
samples[common.LABEL] = tf.identity(samples[common.LABEL], name = common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=FLAGS.train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)
# add name to graph node so we can add to summary
outputs_to_scales_to_logits[common.OUTPUT_TYPE][model._MERGED_LOGITS_SCOPE] = tf.identity(
outputs_to_scales_to_logits[common.OUTPUT_TYPE][model._MERGED_LOGITS_SCOPE],
name = common.OUTPUT_TYPE
)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
scope=output)
return outputs_to_scales_to_logits
示例5: _preprocess_image
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _preprocess_image(self, sample):
"""Preprocesses the image and label.
Args:
sample: A sample containing image and label.
Returns:
sample: Sample with preprocessed image and label.
Raises:
ValueError: Ground truth label not provided during training.
"""
image = sample[common.IMAGE]
label = sample[common.LABELS_CLASS]
original_image, image, label = input_preprocess.preprocess_image_and_label(
image=image,
label=label,
crop_height=self.crop_size[0],
crop_width=self.crop_size[1],
min_resize_value=self.min_resize_value,
max_resize_value=self.max_resize_value,
resize_factor=self.resize_factor,
min_scale_factor=self.min_scale_factor,
max_scale_factor=self.max_scale_factor,
scale_factor_step_size=self.scale_factor_step_size,
ignore_label=self.ignore_label,
is_training=self.is_training,
model_variant=self.model_variant)
sample[common.IMAGE] = image
if not self.is_training:
# Original image is only used during visualization.
sample[common.ORIGINAL_IMAGE] = original_image
if label is not None:
sample[common.LABEL] = label
# Remove common.LABEL_CLASS key in the sample since it is only used to
# derive label and not used in training and evaluation.
sample.pop(common.LABELS_CLASS, None)
return sample
示例6: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
iterator: An iterator of type tf.data.Iterator for images and labels.
outputs_to_num_classes: A map from output type to the number of classes. For
example, for the task of semantic segmentation with 21 semantic classes,
we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
"""
samples = iterator.get_next()
# Add name to input and label nodes so we can add to summary.
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE)
samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=FLAGS.train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
})
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
hard_example_mining_step=FLAGS.hard_example_mining_step,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
scope=output)
# Log the summary
_log_summaries(samples[common.IMAGE], samples[common.LABEL], num_classes,
output_type_dict[model.MERGED_LOGITS_SCOPE])
示例7: _preprocess_image
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _preprocess_image(self, sample):
"""Preprocesses the image and label.
Args:
sample: A sample containing image and label.
Returns:
sample: Sample with preprocessed image and label.
Raises:
ValueError: Ground truth label not provided during training.
"""
image = sample[common.IMAGE]
label = sample[common.LABELS_CLASS]
# print(self.crop_size)
original_image, image, label = input_preprocess.preprocess_image_and_label(
image=image,
label=label,
crop_height=self.crop_size[0],
crop_width=self.crop_size[1],
min_resize_value=self.min_resize_value,
max_resize_value=self.max_resize_value,
resize_factor=self.resize_factor,
min_scale_factor=self.min_scale_factor,
max_scale_factor=self.max_scale_factor,
scale_factor_step_size=self.scale_factor_step_size,
ignore_label=self.ignore_label,
is_training=self.is_training,
model_variant=self.model_variant)
sample[common.IMAGE] = image
if not self.is_training:
# Original image is only used during visualization.
sample[common.ORIGINAL_IMAGE] = original_image
if label is not None:
sample[common.LABEL] = label
# Remove common.LABEL_CLASS key in the sample since it is only used to
# derive label and not used in training and evaluation.
sample.pop(common.LABELS_CLASS, None)
return sample
示例8: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _build_deeplab(inputs_queue, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue: A prefetch queue for images and labels.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
"""
samples = inputs_queue.dequeue()
# Add name to input and label nodes so we can add to summary.
samples[common.IMAGE] = tf.identity(
samples[common.IMAGE], name=common.IMAGE)
samples[common.LABEL] = tf.identity(
samples[common.LABEL], name=common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=FLAGS.train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE],
name=common.OUTPUT_TYPE)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
scope=output)
return outputs_to_scales_to_logits
示例9: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import LABEL [as 別名]
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
iterator: An iterator of type tf.data.Iterator for images and labels.
outputs_to_num_classes: A map from output type to the number of classes. For
example, for the task of semantic segmentation with 21 semantic classes,
we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
"""
samples = iterator.get_next()
# Add name to input and label nodes so we can add to summary.
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE)
samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=[int(sz) for sz in FLAGS.train_crop_size],
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
})
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=model_options.label_weights,
upsample_logits=FLAGS.upsample_logits,
hard_example_mining_step=FLAGS.hard_example_mining_step,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
scope=output)