本文整理匯總了Python中data.UNKNOWN_TOKEN屬性的典型用法代碼示例。如果您正苦於以下問題:Python data.UNKNOWN_TOKEN屬性的具體用法?Python data.UNKNOWN_TOKEN怎麽用?Python data.UNKNOWN_TOKEN使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類data
的用法示例。
在下文中一共展示了data.UNKNOWN_TOKEN屬性的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _add_decoder
# 需要導入模塊: import data [as 別名]
# 或者: from data import UNKNOWN_TOKEN [as 別名]
def _add_decoder(self, emb_dec_inputs, embedding):
"""Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.
Args:
emb_dec_inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
embedding: embedding matrix (vocab_size, emb_dim)
Returns:
outputs: List of tensors; the outputs of the decoder
out_state: The final state of the decoder
attn_dists: A list of tensors; the attention distributions
p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
coverage: A tensor, the current coverage vector
"""
hps = self._hps
cell = tf.contrib.rnn.LSTMCell(hps.dec_hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)
prev_coverage = self.prev_coverage if (hps.mode=="decode" and hps.coverage) else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
prev_decoder_outputs = self.prev_decoder_outputs if (hps.intradecoder and hps.mode=="decode") else tf.stack([],axis=0)
prev_encoder_es = self.prev_encoder_es if (hps.use_temporal_attention and hps.mode=="decode") else tf.stack([],axis=0)
return attention_decoder(_hps=hps,
v_size=self._vocab.size(),
_max_art_oovs=self._max_art_oovs,
_enc_batch_extend_vocab=self._enc_batch_extend_vocab,
emb_dec_inputs=emb_dec_inputs,
target_batch=self._target_batch,
_dec_in_state=self._dec_in_state,
_enc_states=self._enc_states,
enc_padding_mask=self._enc_padding_mask,
dec_padding_mask=self._dec_padding_mask,
cell=cell,
embedding=embedding,
sampling_probability=self._sampling_probability if FLAGS.scheduled_sampling else 0,
alpha=self._alpha if FLAGS.E2EBackProp else 0,
unk_id=self._vocab.word2id(data.UNKNOWN_TOKEN),
initial_state_attention=(hps.mode=="decode"),
pointer_gen=hps.pointer_gen,
use_coverage=hps.coverage,
prev_coverage=prev_coverage,
prev_decoder_outputs=prev_decoder_outputs,
prev_encoder_es = prev_encoder_es)
示例2: _add_decoder
# 需要導入模塊: import data [as 別名]
# 或者: from data import UNKNOWN_TOKEN [as 別名]
def _add_decoder(self, emb_dec_inputs, embedding):
"""Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.
Args:
emb_dec_inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
embedding: embedding matrix (vocab_size, emb_dim)
Returns:
outputs: List of tensors; the outputs of the decoder
out_state: The final state of the decoder
attn_dists: A list of tensors; the attention distributions
p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
coverage: A tensor, the current coverage vector
"""
hps = self._hps
cell = tf.contrib.rnn.LSTMCell(hps.dec_hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)
prev_coverage = self.prev_coverage if (hps.mode=="decode" and hps.coverage) else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
prev_decoder_outputs = self.prev_decoder_outputs if (hps.intradecoder and hps.mode=="decode") else tf.stack([],axis=0)
prev_encoder_es = self.prev_encoder_es if (hps.use_temporal_attention and hps.mode=="decode") else tf.stack([],axis=0)
return attention_decoder(hps,
self._vocab.size(),
self._max_art_oovs,
self._enc_batch_extend_vocab,
emb_dec_inputs,
self._target_batch,
self._dec_in_state,
self._enc_states,
self._enc_padding_mask,
self._dec_padding_mask,
cell,
embedding,
self._sampling_probability if FLAGS.scheduled_sampling else 0,
self._alpha if FLAGS.E2EBackProp else 0,
self._vocab.word2id(data.UNKNOWN_TOKEN),
initial_state_attention=(hps.mode=="decode"),
pointer_gen=hps.pointer_gen,
use_coverage=hps.coverage,
prev_coverage=prev_coverage,
prev_decoder_outputs=prev_decoder_outputs,
prev_encoder_es = prev_encoder_es)
示例3: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import UNKNOWN_TOKEN [as 別名]
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.CheckVocab(data.PAD_TOKEN) > 0
assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0
assert vocab.CheckVocab(data.SENTENCE_START) > 0
assert vocab.CheckVocab(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()
示例4: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import UNKNOWN_TOKEN [as 別名]
def main(unused_argv):
config = importlib.import_module('config.%s' % FLAGS.config)
for argument in FLAGS.override.split(','):
if '=' in argument:
name = argument.split('=')[0]
value = type(getattr(config, name))(argument.split('=')[1])
setattr(config, name, value)
config.input_vocab = data.Vocab(config.input_vocab_file,
config.max_vocab_size) # Max IDs
if config.input_vocab.WordToId(data.PAD_TOKEN) <= 0:
raise ValueError('Invalid PAD_TOKEN id.')
# id of the UNKNOWN_TOKEN should be "0" for copynet model
if config.input_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
raise ValueError('Invalid UNKOWN_TOKEN id.')
if config.input_vocab.WordToId(data.SENTENCE_START) <= 0:
raise ValueError('Invalid SENTENCE_START id.')
if config.input_vocab.WordToId(data.SENTENCE_END) <= 0:
raise ValueError('Invalid SENTENCE_END id.')
if config.output_vocab_file:
config.output_vocab = data.Vocab(config.output_vocab_file,
config.max_vocab_size) # Max IDs
if config.output_vocab.WordToId(data.PAD_TOKEN) <= 0:
raise ValueError('Invalid PAD_TOKEN id.')
# id of the UNKNOWN_TOKEN should be "0" for copynet model
if config.output_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
raise ValueError('Invalid UNKOWN_TOKEN id.')
if config.output_vocab.WordToId(data.SENTENCE_START) <= 0:
raise ValueError('Invalid SENTENCE_START id.')
if config.output_vocab.WordToId(data.SENTENCE_END) <= 0:
raise ValueError('Invalid SENTENCE_END id.')
else:
config.output_vocab = config.input_vocab
train_batcher = config.Batcher(config.train_set, config)
valid_batcher = config.Batcher(config.valid_set, config)
tf.set_random_seed(config.random_seed)
if FLAGS.mode == 'train':
model = config.Model(config, 'train', num_gpus=FLAGS.num_gpus)
_Train(model, config, train_batcher)
elif FLAGS.mode == 'eval':
config.dropout_rnn = 1.0
config.dropout_emb = 1.0
model = config.Model(config, 'eval', num_gpus=FLAGS.num_gpus)
_Eval(model, config, valid_batcher)
elif FLAGS.mode == 'decode':
config.dropout_rnn = 1.0
config.dropout_emb = 1.0
config.batch_size = config.beam_size
model = config.Model(config, 'decode', num_gpus=FLAGS.num_gpus)
decoder = decode.BeamSearch(model, valid_batcher, config)
decoder.DecodeLoop()
示例5: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import UNKNOWN_TOKEN [as 別名]
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.WordToId(data.PAD_TOKEN) > 0
assert vocab.WordToId(data.UNKNOWN_TOKEN) >= 0
assert vocab.WordToId(data.SENTENCE_START) > 0
assert vocab.WordToId(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()