當前位置: 首頁>>代碼示例>>Python>>正文


Python data.START_DECODING屬性代碼示例

本文整理匯總了Python中data.START_DECODING屬性的典型用法代碼示例。如果您正苦於以下問題:Python data.START_DECODING屬性的具體用法?Python data.START_DECODING怎麽用?Python data.START_DECODING使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在data的用法示例。


在下文中一共展示了data.START_DECODING屬性的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import START_DECODING [as 別名]
def __init__(self, article, abstract_sentences, vocab):
    # Get ids of special tokens
    start_decoding = vocab.word2id(data.START_DECODING)
    stop_decoding = vocab.word2id(data.STOP_DECODING)

    # Process the article
    article_words = article.split()
    if len(article_words) > config.max_enc_steps:
      article_words = article_words[:config.max_enc_steps]
    self.enc_len = len(article_words) # store the length after truncation but before padding
    self.enc_input = [vocab.word2id(w) for w in article_words] # list of word ids; OOVs are represented by the id for UNK token
    
    # Process the abstract
    abstract = ' '.join(abstract_sentences)
    abstract_words = abstract.split() # list of strings
    abs_ids = [vocab.word2id(w) for w in abstract_words] # list of word ids; OOVs are represented by the id for UNK token
    
    # Get the decoder input sequence and target sequence
    self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, config.max_dec_steps, start_decoding, stop_decoding)
    self.dec_len = len(self.dec_input)

    # If using pointer-generator mode, we need to store some extra info
    if config.pointer_gen:
      # Store a version of the enc_input where in-article OOVs are represented by their temporary OOV id; also store the in-article OOVs words themselves
      self.enc_input_extend_vocab, self.article_oovs = data.article2ids(article_words, vocab)

      # Get a verison of the reference summary where in-article OOVs are represented by their temporary article OOV id
      abs_ids_extend_vocab = data.abstract2ids(abstract_words, vocab, self.article_oovs)

      # Overwrite decoder target sequence so it uses the temp article OOV ids
      # NOTE: dec_input does not contain article OOV ids!!!!
      _, self.target = self.get_dec_inp_targ_seqs(abs_ids_extend_vocab, config.max_dec_steps, start_decoding, stop_decoding)

    # Store the original strings
    self.original_article = article
    self.original_abstract = abstract
    self.original_abstract_sents = abstract_sentences 
開發者ID:wyu-du,項目名稱:Reinforce-Paraphrase-Generation,代碼行數:39,代碼來源:batcher.py

示例2: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import START_DECODING [as 別名]
def __init__(self, article, abstract_sentences, vocab):
    # Get ids of special tokens
    start_decoding = vocab.word2id(data.START_DECODING)
    stop_decoding = vocab.word2id(data.STOP_DECODING)

    # Process the article
    article_words = article.split()
    if len(article_words) > config.max_enc_steps:
      article_words = article_words[:config.max_enc_steps]
    self.enc_len = len(article_words) # store the length after truncation but before padding
    self.enc_input = [vocab.word2id(w) for w in article_words] # list of word ids; OOVs are represented by the id for UNK token

    # Process the abstract
    abstract = ' '.join(abstract_sentences) # string
    abstract_words = abstract.split() # list of strings
    abs_ids = [vocab.word2id(w) for w in abstract_words] # list of word ids; OOVs are represented by the id for UNK token

    # Get the decoder input sequence and target sequence
    self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, config.max_dec_steps, start_decoding, stop_decoding)
    self.dec_len = len(self.dec_input)

    # If using pointer-generator mode, we need to store some extra info
    if config.pointer_gen:
      # Store a version of the enc_input where in-article OOVs are represented by their temporary OOV id; also store the in-article OOVs words themselves
      self.enc_input_extend_vocab, self.article_oovs = data.article2ids(article_words, vocab)

      # Get a verison of the reference summary where in-article OOVs are represented by their temporary article OOV id
      abs_ids_extend_vocab = data.abstract2ids(abstract_words, vocab, self.article_oovs)

      # Overwrite decoder target sequence so it uses the temp article OOV ids
      _, self.target = self.get_dec_inp_targ_seqs(abs_ids_extend_vocab, config.max_dec_steps, start_decoding, stop_decoding)

    # Store the original strings
    self.original_article = article
    self.original_abstract = abstract
    self.original_abstract_sents = abstract_sentences 
開發者ID:atulkum,項目名稱:pointer_summarizer,代碼行數:38,代碼來源:batcher.py

示例3: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import START_DECODING [as 別名]
def __init__(self, review, label, vocab, hps):

    start_decoding = vocab.word2id(data.START_DECODING)
    stop_decoding = vocab.word2id(data.STOP_DECODING)
    review_sentenc_orig = []


    self.hps = hps
    self.label = label

    #abstract_sentences = [x.strip() for x in abstract_sentences]
    article_sens = sent_tokenize(review)

    article_words = []
    for i in range(len(article_sens)):
        if i >= hps.max_enc_sen_num:
            article_words = article_words[:hps.max_enc_sen_num]
            review_sentenc_orig = review_sentenc_orig[:hps.max_enc_sen_num]
            break
        article_sen = article_sens[i]
        article_sen_words = article_sen.split()
        if len(article_sen_words) > hps.max_enc_seq_len:
            article_sen_words = article_sen_words[:hps.max_enc_seq_len]
        article_words.append(article_sen_words)
        review_sentenc_orig.append(article_sens[i])


    # Process the abstract
    #abstract = ' '.join(abstract_sentences)  # string
    # abstract_words = abstract.split() # list of strings
    abs_ids = [[vocab.word2id(w) for w in sen] for sen in
               article_words]  # list of word ids; OOVs are represented by the id for UNK token

    # Get the decoder input sequence and target sequence
    self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_enc_sen_num, hps.max_enc_seq_len,
                                                              start_decoding,
                                                             stop_decoding)  # max_sen_num,max_len, start_doc_id, end_doc_id,start_id, stop_id
    self.dec_len = len(self.dec_input)
    self.dec_sen_len = [len(sentence) for sentence in self.target]

    self.original_reivew = review_sentenc_orig 
開發者ID:loretoparisi,項目名稱:docker,代碼行數:43,代碼來源:batcher_discriminator.py

示例4: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import START_DECODING [as 別名]
def __init__(self, article, abstract_sentences, vocab, hps):
    """Initializes the Example, performing tokenization and truncation to produce the encoder, decoder and target sequences, which are stored in self.

    Args:
      article: source text; a string. each token is separated by a single space.
      abstract_sentences: list of strings, one per abstract sentence. In each sentence, each token is separated by a single space.
      vocab: Vocabulary object
      hps: hyperparameters
    """
    self.hps = hps

    # Get ids of special tokens
    start_decoding = vocab.word2id(data.START_DECODING)
    stop_decoding = vocab.word2id(data.STOP_DECODING)

    # Process the article
    article_words = article.split()
    if len(article_words) > hps.max_enc_steps:
      article_words = article_words[:hps.max_enc_steps]
    self.enc_len = len(article_words) # store the length after truncation but before padding
    self.enc_input = [vocab.word2id(w) for w in article_words] # list of word ids; OOVs are represented by the id for UNK token

    # Process the abstract
    abstract = ' '.join(abstract_sentences) # string
    abstract_words = abstract.split() # list of strings
    abs_ids = [vocab.word2id(w) for w in abstract_words] # list of word ids; OOVs are represented by the id for UNK token

    # Get the decoder input sequence and target sequence
    self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_dec_steps, start_decoding, stop_decoding)
    self.dec_len = len(self.dec_input)

    # If using pointer-generator mode, we need to store some extra info
    if hps.pointer_gen:
      # Store a version of the enc_input where in-article OOVs are represented by their temporary OOV id; also store the in-article OOVs words themselves
      self.enc_input_extend_vocab, self.article_oovs = data.article2ids(article_words, vocab)

      # Get a verison of the reference summary where in-article OOVs are represented by their temporary article OOV id
      abs_ids_extend_vocab = data.abstract2ids(abstract_words, vocab, self.article_oovs)

      # Overwrite decoder target sequence so it uses the temp article OOV ids
      _, self.target = self.get_dec_inp_targ_seqs(abs_ids_extend_vocab, hps.max_dec_steps, start_decoding, stop_decoding)

    # Store the original strings
    self.original_article = article
    self.original_abstract = abstract
    self.original_abstract_sents = abstract_sentences 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:48,代碼來源:batcher.py

示例5: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import START_DECODING [as 別名]
def __init__(self, article, abstract_sentences, vocab, hps):
        """Initializes the Example, performing tokenization and truncation to produce the encoder, decoder and target sequences, which are stored in self.

    Args:
      article: source text; a string. each token is separated by a single space.
      abstract_sentences: list of strings, one per abstract sentence. In each sentence, each token is separated by a single space.
      vocab: Vocabulary object
      hps: hyperparameters
    """
        self.hps = hps

        # Get ids of special tokens
        start_decoding = vocab.word2id(data.START_DECODING)
        stop_decoding = vocab.word2id(data.STOP_DECODING)

        # Process the article
        article_words = article.split()
        if len(article_words) > hps.max_enc_steps:
            article_words = article_words[:hps.max_enc_steps]
        self.enc_len = len(article_words)  # store the length after truncation but before padding
        self.enc_input = [vocab.word2id(w) for w in
                          article_words]  # list of word ids; OOVs are represented by the id for UNK token

        # Process the abstract
        abstract = ' '.join(abstract_sentences)  # string
        abstract_words = abstract.split()  # list of strings
        abs_ids = [vocab.word2id(w) for w in
                   abstract_words]  # list of word ids; OOVs are represented by the id for UNK token

        # Get the decoder input sequence and target sequence
        self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_dec_steps, start_decoding,
                                                                 stop_decoding)
        self.dec_len = len(self.dec_input)

        # If using pointer-generator mode, we need to store some extra info
        if hps.pointer_gen:
            # Store a version of the enc_input where in-article OOVs are represented by their temporary OOV id; also store the in-article OOVs words themselves
            self.enc_input_extend_vocab, self.article_oovs = data.article2ids(article_words, vocab)

            # Get a verison of the reference summary where in-article OOVs are represented by their temporary article OOV id
            abs_ids_extend_vocab = data.abstract2ids(abstract_words, vocab, self.article_oovs)

            # Overwrite decoder target sequence so it uses the temp article OOV ids
            _, self.target = self.get_dec_inp_targ_seqs(abs_ids_extend_vocab, hps.max_dec_steps, start_decoding,
                                                        stop_decoding)

        # Store the original strings
        self.original_article = article
        self.original_abstract = abstract
        self.original_abstract_sents = abstract_sentences 
開發者ID:IBM,項目名稱:MAX-Text-Summarizer,代碼行數:52,代碼來源:batcher.py


注:本文中的data.START_DECODING屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。