當前位置: 首頁>>代碼示例>>Python>>正文


Python data.PAD_TOKEN屬性代碼示例

本文整理匯總了Python中data.PAD_TOKEN屬性的典型用法代碼示例。如果您正苦於以下問題:Python data.PAD_TOKEN屬性的具體用法?Python data.PAD_TOKEN怎麽用?Python data.PAD_TOKEN使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在data的用法示例。


在下文中一共展示了data.PAD_TOKEN屬性的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
        """Turns the example_list into a Batch object.

        Args:
           example_list: List of Example objects
           hps: hyperparameters
           vocab: Vocabulary object
        """
        self._hps = hps
        self.pad_id = vocab.word2id(
            data.PAD_TOKEN)  # id of the PAD token used to pad sequences
        self.sec_pad_id = vocab.word2id(data.SEC_PAD_TOKEN)
        # initialize the input to the encoder
        self.init_encoder_seq(example_list, hps)
        # initialize the input and targets for the decoder
        self.init_decoder_seq(example_list, hps)
        self.store_orig_strings(example_list)  # store the original strings 
開發者ID:armancohan,項目名稱:long-summarization,代碼行數:19,代碼來源:batch_reader.py

示例2: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
    """Turns the example_list into a Batch object.

    Args:
       example_list: List of Example objects
       hps: hyperparameters
       vocab: Vocabulary object
    """
    self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
    if hps.model in ['rewriter', 'end2end']:
      self.init_rewriter_encoder_seq(example_list, hps) # initialize the input to the rewriter encoder
      self.init_rewriter_decoder_seq(example_list, hps) # initialize the input and targets for the rewriter decoder
    if hps.model in ['selector', 'end2end']:
      self.init_selector_encoder_seq(example_list, hps) # initialize the input to the selector encoder
      self.init_selector_target(example_list, hps) # initialize the target to selector
    self.store_orig_strings(example_list) # store the original strings 
開發者ID:HsuWanTing,項目名稱:unified-summarization,代碼行數:18,代碼來源:batcher.py

示例3: create_batch

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def create_batch(example_list, hps, vocab):
    """Turns the example_list into a Batch object.

    Args:
       example_list: List of Example objects
       hps: hyperparameters
       vocab: Vocabulary object
    """
    batch = Batch()
    batch.pad_id = vocab.word2id(data.PAD_TOKEN)
    batch.init_encoder_seq(example_list, hps) # initialize the input to the encoder
    batch.init_decoder_seq(example_list, hps) # initialize the input and targets for the decoder
    batch.store_orig_strings(example_list) # store the original strings
    return batch 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:16,代碼來源:batcher.py

示例4: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
    """Turns the example_list into a Batch object.

    Args:
       example_list: List of Example objects
       hps: hyperparameters
       vocab: Vocabulary object
    """
    self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
    self.init_encoder_seq(example_list, hps) # initialize the input to the encoder
    self.init_decoder_seq(example_list, hps) # initialize the input and targets for the decoder
    self.store_orig_strings(example_list) # store the original strings 
開發者ID:yaserkl,項目名稱:RLSeq2Seq,代碼行數:14,代碼來源:batcher.py

示例5: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
        """Turns the example_list into a Batch object.

    Args:
       example_list: List of Example objects
       hps: hyperparameters
       vocab: Vocabulary object
    """
        self.pad_id = vocab.word2id(data.PAD_TOKEN)  # id of the PAD token used to pad sequences
        self.init_encoder_seq(example_list, hps)  # initialize the input to the encoder
        self.init_decoder_seq(example_list, hps)  # initialize the input and targets for the decoder
        self.store_orig_strings(example_list)  # store the original strings 
開發者ID:IBM,項目名稱:MAX-Text-Summarizer,代碼行數:14,代碼來源:batcher.py

示例6: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, vocab, batch_size):
    self.batch_size = batch_size
    self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
    self.init_encoder_seq(example_list) # initialize the input to the encoder
    self.init_decoder_seq(example_list) # initialize the input and targets for the decoder
    self.store_orig_strings(example_list) # store the original strings 
開發者ID:wyu-du,項目名稱:Reinforce-Paraphrase-Generation,代碼行數:8,代碼來源:batcher.py

示例7: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
        """Turns the example_list into a Batch object.

        Args:
           example_list: List of Example objects
           hps: hyperparameters
           vocab: Vocabulary object
        """
        self.pad_id = vocab.word2id(
            data.PAD_TOKEN)  # id of the PAD token used to pad sequences
        # initialize the input to the encoder
        self.init_encoder_seq(example_list, hps)
        # initialize the input and targets for the decoder
        self.init_decoder_seq(example_list, hps)
        self.store_orig_strings(example_list)  # store the original strings 
開發者ID:rdangovs,項目名稱:rotational-unit-of-memory,代碼行數:17,代碼來源:batcher.py

示例8: _get_section_words

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def _get_section_words(sec, max_len=None, pad_id=data.PAD_TOKEN, pad=True):
  """ given a section (list of sentences), returns a single list of words in that section """
  words = ' '.join(sec).split()
  if max_len is None:
    max_len = len(words)
  if pad:
    while len(words) < max_len:
      words += [pad_id]
  return words[:max_len] 
開發者ID:armancohan,項目名稱:long-summarization,代碼行數:11,代碼來源:batch_reader.py

示例9: _pad_words

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def _pad_words(words, max_len=None, pad_id=data.PAD_TOKEN):
  """ given a section (list of sentences), returns a single list of words in that section """
  if max_len is None:
    max_len = len(words)
  while len(words) < max_len:
    words += [pad_id]
  return words[:max_len] 
開發者ID:armancohan,項目名稱:long-summarization,代碼行數:9,代碼來源:batch_reader.py

示例10: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
    """Turns the example_list into a Batch object.

    Args:
       example_list: List of Example objects
       hps: hyperparameters
       vocab: Vocabulary object
    """
    self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
    self.init_decoder_seq(example_list, hps)  # initialize the input to the encoder 
開發者ID:loretoparisi,項目名稱:docker,代碼行數:12,代碼來源:batcher_discriminator.py

示例11: __init__

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def __init__(self, example_list, hps, vocab):
    """Turns the example_list into a Batch object.

    Args:
       example_list: List of Example objects
       hps: hyperparameters
       vocab: Vocabulary object
    """
    self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
    if FLAGS.run_method == 'auto-encoder':
        self.init_encoder_seq(example_list, hps)  # initialize the input to the encoder
    self.init_decoder_seq(example_list, hps) # initialize the input and targets for the decoder
    self.store_orig_strings(example_list) # store the original strings 
開發者ID:loretoparisi,項目名稱:docker,代碼行數:15,代碼來源:batcher.py

示例12: main

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def main(unused_argv):
  vocab = data.Vocab(FLAGS.vocab_path, 1000000)
  # Check for presence of required special tokens.
  assert vocab.CheckVocab(data.PAD_TOKEN) > 0
  assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0
  assert vocab.CheckVocab(data.SENTENCE_START) > 0
  assert vocab.CheckVocab(data.SENTENCE_END) > 0

  batch_size = 4
  if FLAGS.mode == 'decode':
    batch_size = FLAGS.beam_size

  hps = seq2seq_attention_model.HParams(
      mode=FLAGS.mode,  # train, eval, decode
      min_lr=0.01,  # min learning rate.
      lr=0.15,  # learning rate
      batch_size=batch_size,
      enc_layers=4,
      enc_timesteps=120,
      dec_timesteps=30,
      min_input_len=2,  # discard articles/summaries < than this
      num_hidden=256,  # for rnn cell
      emb_dim=128,  # If 0, don't use embedding
      max_grad_norm=2,
      num_softmax_samples=4096)  # If 0, no sampled softmax.

  batcher = batch_reader.Batcher(
      FLAGS.data_path, vocab, hps, FLAGS.article_key,
      FLAGS.abstract_key, FLAGS.max_article_sentences,
      FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
      truncate_input=FLAGS.truncate_input)
  tf.set_random_seed(FLAGS.random_seed)

  if hps.mode == 'train':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Train(model, batcher)
  elif hps.mode == 'eval':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Eval(model, batcher, vocab=vocab)
  elif hps.mode == 'decode':
    decode_mdl_hps = hps
    # Only need to restore the 1st step and reuse it since
    # we keep and feed in state for each step's output.
    decode_mdl_hps = hps._replace(dec_timesteps=1)
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
    decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
    decoder.DecodeLoop() 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:52,代碼來源:seq2seq_attention.py

示例13: main

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def main(unused_argv):

  config = importlib.import_module('config.%s' % FLAGS.config)
  for argument in FLAGS.override.split(','):
    if '=' in argument:
      name = argument.split('=')[0]
      value = type(getattr(config, name))(argument.split('=')[1])
      setattr(config, name, value)
  config.input_vocab = data.Vocab(config.input_vocab_file,
                                   config.max_vocab_size)  # Max IDs
  if config.input_vocab.WordToId(data.PAD_TOKEN) <= 0:
    raise ValueError('Invalid PAD_TOKEN id.')
  # id of the UNKNOWN_TOKEN should be "0" for copynet model
  if config.input_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
    raise ValueError('Invalid UNKOWN_TOKEN id.')
  if config.input_vocab.WordToId(data.SENTENCE_START) <= 0:
    raise ValueError('Invalid SENTENCE_START id.')
  if config.input_vocab.WordToId(data.SENTENCE_END) <= 0:
    raise ValueError('Invalid SENTENCE_END id.')

  if config.output_vocab_file:
    config.output_vocab = data.Vocab(config.output_vocab_file,
                                     config.max_vocab_size)  # Max IDs
    if config.output_vocab.WordToId(data.PAD_TOKEN) <= 0:
      raise ValueError('Invalid PAD_TOKEN id.')
    # id of the UNKNOWN_TOKEN should be "0" for copynet model
    if config.output_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
      raise ValueError('Invalid UNKOWN_TOKEN id.')
    if config.output_vocab.WordToId(data.SENTENCE_START) <= 0:
      raise ValueError('Invalid SENTENCE_START id.')
    if config.output_vocab.WordToId(data.SENTENCE_END) <= 0:
      raise ValueError('Invalid SENTENCE_END id.')
  else:
    config.output_vocab = config.input_vocab

  train_batcher = config.Batcher(config.train_set, config)
  valid_batcher = config.Batcher(config.valid_set, config)
  tf.set_random_seed(config.random_seed)

  if FLAGS.mode == 'train':
    model = config.Model(config, 'train', num_gpus=FLAGS.num_gpus)
    _Train(model, config, train_batcher)
  elif FLAGS.mode == 'eval':
    config.dropout_rnn = 1.0
    config.dropout_emb = 1.0
    model = config.Model(config, 'eval', num_gpus=FLAGS.num_gpus)
    _Eval(model, config, valid_batcher)
  elif FLAGS.mode == 'decode':
    config.dropout_rnn = 1.0
    config.dropout_emb = 1.0
    config.batch_size = config.beam_size
    model = config.Model(config, 'decode', num_gpus=FLAGS.num_gpus)
    decoder = decode.BeamSearch(model, valid_batcher, config)
    decoder.DecodeLoop() 
開發者ID:google,項目名稱:text2text,代碼行數:56,代碼來源:main.py

示例14: main

# 需要導入模塊: import data [as 別名]
# 或者: from data import PAD_TOKEN [as 別名]
def main(unused_argv):
  vocab = data.Vocab(FLAGS.vocab_path, 1000000)
  # Check for presence of required special tokens.
  assert vocab.WordToId(data.PAD_TOKEN) > 0
  assert vocab.WordToId(data.UNKNOWN_TOKEN) >= 0
  assert vocab.WordToId(data.SENTENCE_START) > 0
  assert vocab.WordToId(data.SENTENCE_END) > 0

  batch_size = 4
  if FLAGS.mode == 'decode':
    batch_size = FLAGS.beam_size

  hps = seq2seq_attention_model.HParams(
      mode=FLAGS.mode,  # train, eval, decode
      min_lr=0.01,  # min learning rate.
      lr=0.15,  # learning rate
      batch_size=batch_size,
      enc_layers=4,
      enc_timesteps=120,
      dec_timesteps=30,
      min_input_len=2,  # discard articles/summaries < than this
      num_hidden=256,  # for rnn cell
      emb_dim=128,  # If 0, don't use embedding
      max_grad_norm=2,
      num_softmax_samples=4096)  # If 0, no sampled softmax.

  batcher = batch_reader.Batcher(
      FLAGS.data_path, vocab, hps, FLAGS.article_key,
      FLAGS.abstract_key, FLAGS.max_article_sentences,
      FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
      truncate_input=FLAGS.truncate_input)
  tf.set_random_seed(FLAGS.random_seed)

  if hps.mode == 'train':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Train(model, batcher)
  elif hps.mode == 'eval':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Eval(model, batcher, vocab=vocab)
  elif hps.mode == 'decode':
    decode_mdl_hps = hps
    # Only need to restore the 1st step and reuse it since
    # we keep and feed in state for each step's output.
    decode_mdl_hps = hps._replace(dec_timesteps=1)
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
    decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
    decoder.DecodeLoop() 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:52,代碼來源:seq2seq_attention.py


注:本文中的data.PAD_TOKEN屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。