當前位置: 首頁>>代碼示例>>Python>>正文


Python cvxpy.SCS屬性代碼示例

本文整理匯總了Python中cvxpy.SCS屬性的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.SCS屬性的具體用法?Python cvxpy.SCS怎麽用?Python cvxpy.SCS使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cvxpy的用法示例。


在下文中一共展示了cvxpy.SCS屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def fit(self, max_iters=100, eps=1e-2, use_indirect=False, warm_start=False):
        
        Xv, Yp, pX = self.probX
        Xp, Yv, pY = self.probY
        self.converge.reset()

        # alternating minimization
        while not self.converge.d():
            objX = pX.solve(solver=cp.SCS, eps=eps, max_iters=max_iters,
                    use_indirect=use_indirect, warm_start=warm_start)
            Xp.value[:,:-1] = copy(Xv.value)

            # can parallelize this
            for ypj, yvj, pyj in zip(Yp, Yv, pY): 
                objY = pyj.solve(solver=cp.SCS, eps=eps, max_iters=max_iters,
                        use_indirect=use_indirect, warm_start=warm_start)
                ypj.value = copy(yvj.value)
            self.converge.obj.append(objX)

        self._finalize_XY(Xv, Yv)
        return self.X, self.Y 
開發者ID:powerscorinne,項目名稱:GLRM,代碼行數:23,代碼來源:glrm.py

示例2: solve

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def solve(self, X, missing_mask):
        X = check_array(X, force_all_finite=False)

        m, n = X.shape
        S, objective = self._create_objective(m, n)
        constraints = self._constraints(
            X=X,
            missing_mask=missing_mask,
            S=S,
            error_tolerance=self.error_tolerance)
        problem = cvxpy.Problem(objective, constraints)
        problem.solve(
            verbose=self.verbose,
            solver=cvxpy.SCS,
            max_iters=self.max_iters,
            # use_indirect, see: https://github.com/cvxgrp/cvxpy/issues/547
            use_indirect=False)
        return S.value 
開發者ID:YyzHarry,項目名稱:ME-Net,代碼行數:20,代碼來源:nuclear_norm_minimization.py

示例3: get_inpaint_func_tv

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def get_inpaint_func_tv():
    def inpaint_func(image, mask):
        """Total variation inpainting"""
        inpainted = np.zeros_like(image)
        for c in range(image.shape[2]):
            image_c = image[:, :, c]
            mask_c = mask[:, :, c]
            if np.min(mask_c) > 0:
                # if mask is all ones, no need to inpaint
                inpainted[:, :, c] = image_c
            else:
                h, w = image_c.shape
                inpainted_c_var = cvxpy.Variable(h, w)
                obj = cvxpy.Minimize(cvxpy.tv(inpainted_c_var))
                constraints = [cvxpy.mul_elemwise(mask_c, inpainted_c_var) == cvxpy.mul_elemwise(mask_c, image_c)]
                prob = cvxpy.Problem(obj, constraints)
                # prob.solve(solver=cvxpy.SCS, max_iters=100, eps=1e-2)  # scs solver
                prob.solve()  # default solver
                inpainted[:, :, c] = inpainted_c_var.value
        return inpainted
    return inpaint_func 
開發者ID:AshishBora,項目名稱:ambient-gan,代碼行數:23,代碼來源:measure_utils.py

示例4: ball_con

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def ball_con():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('ball con')
    npr.seed(0)

    n = 2

    A = cp.Parameter((n, n))
    z = cp.Parameter(n)
    p = cp.Parameter(n)
    x = cp.Variable(n)
    t = cp.Variable(n)
    obj = cp.Minimize(0.5 * cp.sum_squares(x - p))
    # TODO automate introduction of variables.
    cons = [0.5 * cp.sum_squares(A * t) <= 1, t == (x - z)]
    prob = cp.Problem(obj, cons)

    L = npr.randn(n, n)
    A.value = L.T
    z.value = npr.randn(n)
    p.value = npr.randn(n)

    prob.solve(solver=cp.SCS)
    print(x.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:26,代碼來源:cvxpy_examples.py

示例5: relu

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def relu():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('relu')
    npr.seed(0)

    n = 4
    _x = cp.Parameter(n)
    _y = cp.Variable(n)
    obj = cp.Minimize(cp.sum_squares(_y - _x))
    cons = [_y >= 0]
    prob = cp.Problem(obj, cons)

    _x.value = npr.randn(n)

    prob.solve(solver=cp.SCS)
    print(_y.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:18,代碼來源:cvxpy_examples.py

示例6: test_lml

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def test_lml(self):
        tf.random.set_seed(0)
        k = 2
        x = cp.Parameter(4)
        y = cp.Variable(4)
        obj = -x * y - cp.sum(cp.entr(y)) - cp.sum(cp.entr(1. - y))
        cons = [cp.sum(y) == k]
        problem = cp.Problem(cp.Minimize(obj), cons)
        lml = CvxpyLayer(problem, [x], [y])
        x_tf = tf.Variable([1., -1., -1., -1.], dtype=tf.float64)

        with tf.GradientTape() as tape:
            y_opt = lml(x_tf, solver_args={'eps': 1e-10})[0]
            loss = -tf.math.log(y_opt[1])

        def f():
            problem.solve(solver=cp.SCS, eps=1e-10)
            return -np.log(y.value[1])

        grad = tape.gradient(loss, [x_tf])
        numgrad = numerical_grad(f, [x], [x_tf])
        np.testing.assert_almost_equal(grad, numgrad, decimal=3) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:24,代碼來源:test_cvxpylayer.py

示例7: tune_temp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def tune_temp(logits, labels, binary_search=True, lower=0.2, upper=5.0, eps=0.0001):
    logits = np.array(logits)

    if binary_search:
        import torch
        import torch.nn.functional as F

        logits = torch.FloatTensor(logits)
        labels = torch.LongTensor(labels)
        t_guess = torch.FloatTensor([0.5*(lower + upper)]).requires_grad_()

        while upper - lower > eps:
            if torch.autograd.grad(F.cross_entropy(logits / t_guess, labels), t_guess)[0] > 0:
                upper = 0.5 * (lower + upper)
            else:
                lower = 0.5 * (lower + upper)
            t_guess = t_guess * 0 + 0.5 * (lower + upper)

        t = min([lower, 0.5 * (lower + upper), upper], key=lambda x: float(F.cross_entropy(logits / x, labels)))
    else:
        import cvxpy as cx

        set_size = np.array(logits).shape[0]

        t = cx.Variable()

        expr = sum((cx.Minimize(cx.log_sum_exp(logits[i, :] * t) - logits[i, labels[i]] * t)
                    for i in range(set_size)))
        p = cx.Problem(expr, [lower <= t, t <= upper])

        p.solve()   # p.solve(solver=cx.SCS)
        t = 1 / t.value

    return t 
開發者ID:hendrycks,項目名稱:pre-training,代碼行數:36,代碼來源:calibration_tools.py

示例8: forward_single_np

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def forward_single_np(Q, p, G, h, A, b):
    nz, neq, nineq = p.shape[0], A.shape[0] if A is not None else 0, G.shape[0]

    z_ = cp.Variable(nz)

    obj = cp.Minimize(0.5 * cp.quad_form(z_, Q) + p.T * z_)
    eqCon = A * z_ == b if neq > 0 else None
    if nineq > 0:
        slacks = cp.Variable(nineq)
        ineqCon = G * z_ + slacks == h
        slacksCon = slacks >= 0
    else:
        ineqCon = slacks = slacksCon = None
    cons = [x for x in [eqCon, ineqCon, slacksCon] if x is not None]
    prob = cp.Problem(obj, cons)
    prob.solve()  # solver=cp.SCS, max_iters=5000, verbose=False)
    # prob.solve(solver=cp.SCS, max_iters=10000, verbose=True)
    assert('optimal' in prob.status)
    zhat = np.array(z_.value).ravel()
    nu = np.array(eqCon.dual_value).ravel() if eqCon is not None else None
    if ineqCon is not None:
        lam = np.array(ineqCon.dual_value).ravel()
        slacks = np.array(slacks.value).ravel()
    else:
        lam = slacks = None

    return prob.value, zhat, nu, lam, slacks 
開發者ID:locuslab,項目名稱:qpth,代碼行數:29,代碼來源:cvxpy.py

示例9: simple_qp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def simple_qp():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('simple qp')
    npr.seed(0)
    nx, ncon = 2, 3

    G = cp.Parameter((ncon, nx))
    h = cp.Parameter(ncon)
    x = cp.Variable(nx)
    obj = cp.Minimize(0.5 * cp.sum_squares(x - 1))
    cons = [G * x <= h]
    prob = cp.Problem(obj, cons)

    data, chain, inv_data = prob.get_problem_data(solver=cp.SCS)
    param_prob = data[cp.settings.PARAM_PROB]
    print(param_prob.A.A)

    x0 = npr.randn(nx)
    s0 = npr.randn(ncon)
    G.value = npr.randn(ncon, nx)
    h.value = G.value.dot(x0) + s0

    prob.solve(solver=cp.SCS)

    delC = npr.randn(param_prob.c.shape[0])[:-1]
    delA = npr.randn(param_prob.A.shape[0])
    num_con = delA.size // (param_prob.x.size + 1)
    delb = delA[-num_con:]
    delA = delA[:-num_con]
    delA = sp.csc_matrix(np.reshape(delA, (num_con, param_prob.x.size)))
    del_param_dict = param_prob.apply_param_jac(delC, delA, delb)
    print(del_param_dict)
    var_map = param_prob.split_solution(npr.randn(param_prob.x.size))
    print(var_map)
    print(param_prob.split_adjoint(var_map))

    print(x.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:39,代碼來源:cvxpy_examples.py

示例10: full_qp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def full_qp():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('full qp')
    npr.seed(0)
    nx, ncon_eq, ncon_ineq = 5, 2, 3

    Q = cp.Parameter((nx, nx))
    p = cp.Parameter((nx, 1))
    A = cp.Parameter((ncon_eq, nx))
    b = cp.Parameter(ncon_eq)
    G = cp.Parameter((ncon_ineq, nx))
    h = cp.Parameter(ncon_ineq)
    x = cp.Variable(nx)
    # obj = cp.Minimize(0.5*cp.quad_form(x, Q) + p.T * x)
    obj = cp.Minimize(0.5 * cp.sum_squares(Q@x) + p.T * x)
    cons = [A * x == b, G * x <= h]
    prob = cp.Problem(obj, cons)

    x0 = npr.randn(nx)
    s0 = npr.randn(ncon_ineq)

    G.value = npr.randn(ncon_ineq, nx)
    h.value = G.value.dot(x0) + s0

    A.value = npr.randn(ncon_eq, nx)
    b.value = A.value.dot(x0)

    L = npr.randn(nx, nx)
    Q.value = L.T  # L.dot(L.T)
    p.value = npr.randn(nx, 1)

    prob.solve(solver=cp.SCS)
    print(x.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:35,代碼來源:cvxpy_examples.py

示例11: sigmoid

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def sigmoid():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('sigmoid')
    npr.seed(0)

    n = 4
    _x = cp.Parameter((n, 1))
    _y = cp.Variable(n)
    obj = cp.Minimize(-_x.T * _y - cp.sum(cp.entr(_y) + cp.entr(1. - _y)))
    prob = cp.Problem(obj)

    _x.value = npr.randn(n, 1)

    prob.solve(solver=cp.SCS)
    print(_y.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:17,代碼來源:cvxpy_examples.py

示例12: sdp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def sdp():
    print('sdp')
    npr.seed(0)

    d = 2
    X = cp.Variable((d, d), PSD=True)
    Y = cp.Parameter((d, d))
    obj = cp.Minimize(cp.trace(Y * X))
    prob = cp.Problem(obj, [X >= 1])

    Y.value = np.abs(npr.randn(d, d))
    print(Y.value.sum())

    prob.solve(solver=cp.SCS, verbose=True)
    print(X.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:17,代碼來源:cvxpy_examples.py

示例13: test_docstring_example

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def test_docstring_example(self):
        np.random.seed(0)
        tf.random.set_seed(0)

        n, m = 2, 3
        x = cp.Variable(n)
        A = cp.Parameter((m, n))
        b = cp.Parameter(m)
        constraints = [x >= 0]
        objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
        problem = cp.Problem(objective, constraints)
        assert problem.is_dpp()

        cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])
        A_tf = tf.Variable(tf.random.normal((m, n)))
        b_tf = tf.Variable(tf.random.normal((m,)))

        with tf.GradientTape() as tape:
            # solve the problem, setting the values of A and b to A_tf and b_tf
            solution, = cvxpylayer(A_tf, b_tf)
            summed_solution = tf.math.reduce_sum(solution)
        gradA, gradb = tape.gradient(summed_solution, [A_tf, b_tf])

        def f():
            problem.solve(solver=cp.SCS, eps=1e-10)
            return np.sum(x.value)

        numgradA, numgradb = numerical_grad(f, [A, b], [A_tf, b_tf])
        np.testing.assert_almost_equal(gradA, numgradA, decimal=4)
        np.testing.assert_almost_equal(gradb, numgradb, decimal=4) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:32,代碼來源:test_cvxpylayer.py

示例14: test_logistic_regression

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def test_logistic_regression(self):
        np.random.seed(243)
        N, n = 10, 2

        def sigmoid(z):
            return 1 / (1 + np.exp(-z))

        X_np = np.random.randn(N, n)
        a_true = np.random.randn(n, 1)
        y_np = np.round(sigmoid(X_np @ a_true + np.random.randn(N, 1) * 0.5))

        X_tf = tf.Variable(X_np)
        lam_tf = tf.Variable(1.0 * tf.ones(1))

        a = cp.Variable((n, 1))
        X = cp.Parameter((N, n))
        lam = cp.Parameter(1, nonneg=True)
        y = y_np

        log_likelihood = cp.sum(
            cp.multiply(y, X @ a) -
            cp.log_sum_exp(cp.hstack([np.zeros((N, 1)), X @ a]).T, axis=0,
                           keepdims=True).T
        )
        prob = cp.Problem(
            cp.Minimize(-log_likelihood + lam * cp.sum_squares(a)))
        fit_logreg = CvxpyLayer(prob, [X, lam], [a])

        with tf.GradientTape(persistent=True) as tape:
            weights = fit_logreg(X_tf, lam_tf, solver_args={'eps': 1e-8})[0]
            summed = tf.math.reduce_sum(weights)
        grad_X_tf, grad_lam_tf = tape.gradient(summed, [X_tf, lam_tf])

        def f_train():
            prob.solve(solver=cp.SCS, eps=1e-8)
            return np.sum(a.value)

        numgrad_X_tf, numgrad_lam_tf = numerical_grad(
            f_train, [X, lam], [X_tf, lam_tf], delta=1e-6)
        np.testing.assert_allclose(grad_X_tf, numgrad_X_tf, atol=1e-2)
        np.testing.assert_allclose(grad_lam_tf, numgrad_lam_tf, atol=1e-2) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:43,代碼來源:test_cvxpylayer.py

示例15: test_sdp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import SCS [as 別名]
def test_sdp(self):
        tf.random.set_seed(5)

        n = 3
        p = 3
        C = cp.Parameter((n, n))
        A = [cp.Parameter((n, n)) for _ in range(p)]
        b = [cp.Parameter((1, 1)) for _ in range(p)]

        C_tf = tf.Variable(tf.random.normal((n, n), dtype=tf.float64))
        A_tf = [tf.Variable(tf.random.normal((n, n), dtype=tf.float64))
                for _ in range(p)]
        b_tf = [tf.Variable(tf.random.normal((1, 1), dtype=tf.float64))
                for _ in range(p)]

        X = cp.Variable((n, n), symmetric=True)
        constraints = [X >> 0]
        constraints += [
            cp.trace(A[i]@X) == b[i] for i in range(p)
        ]
        problem = cp.Problem(cp.Minimize(
            cp.trace(C @ X) - cp.log_det(X) + cp.sum_squares(X)),
            constraints)
        layer = CvxpyLayer(problem, [C] + A + b, [X])
        values = [C_tf] + A_tf + b_tf
        with tf.GradientTape() as tape:
            soln = layer(*values,
                         solver_args={'eps': 1e-10, 'max_iters': 10000})[0]
            summed = tf.math.reduce_sum(soln)
        grads = tape.gradient(summed, values)

        def f():
            problem.solve(cp.SCS, eps=1e-10, max_iters=10000)
            return np.sum(X.value)

        numgrads = numerical_grad(f, [C] + A + b, values, delta=1e-4)
        for g, ng in zip(grads, numgrads):
            np.testing.assert_allclose(g, ng, atol=1e-1) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:40,代碼來源:test_cvxpylayer.py


注:本文中的cvxpy.SCS屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。