當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.THRESH_TRUNC屬性代碼示例

本文整理匯總了Python中cv2.THRESH_TRUNC屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.THRESH_TRUNC屬性的具體用法?Python cv2.THRESH_TRUNC怎麽用?Python cv2.THRESH_TRUNC使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cv2的用法示例。


在下文中一共展示了cv2.THRESH_TRUNC屬性的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def __init__(self):
        self.resize = ResizeClip(resize_shape = [2,2])
        self.crop = CropClip(0,0,0,0, crop_shape=[2,2])
        self.rand_crop = RandomCropClip(crop_shape=[2,2])
        self.cent_crop = CenterCropClip(crop_shape=[2,2])
        self.rand_flip_h = RandomFlipClip(direction='h', p=1.0)
        self.rand_flip_v = RandomFlipClip(direction='v', p=1.0)
        self.rand_rot = RandomRotateClip(angles=[90])
        self.rand_trans = RandomTranslateClip(translate=(0.5,0.5))
        self.rand_zoom  = RandomZoomClip(scale=(1.25,1.25)) 
        self.sub_mean = SubtractMeanClip(clip_mean=np.zeros(1))
        self.applypil = ApplyToPIL(transform=torchvision.transforms.ColorJitter, class_kwargs=dict(brightness=1))
        self.applypil2 = ApplyToPIL(transform=torchvision.transforms.FiveCrop, class_kwargs=dict(size=(64,64)))
        self.applytensor = ApplyToTensor(transform=torchvision.transforms.Normalize, class_kwargs=dict(mean=torch.tensor([0.,0.,0.]), std=torch.tensor([1.,1.,1.])))
        self.applycv = ApplyOpenCV(transform=cv2.threshold, class_kwargs=dict(thresh=100, maxval=100, type=cv2.THRESH_TRUNC))
        self.preproc = PreprocTransform() 
開發者ID:MichiganCOG,項目名稱:ViP,代碼行數:18,代碼來源:preprocessing_transforms.py

示例2: binary_image

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def binary_image(self,img):
        # 應用5種不同的閾值方法
        # ret, th1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
        # ret, th2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
        # ret, th3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
        # ret, th4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
        # ret, th5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
        # titles = ['Gray', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
        # images = [img_gray, th1, th2, th3, th4, th5]
        # 使用Matplotlib顯示
        # for i in range(6):
        #     plt.subplot(2, 3, i + 1)
        #     plt.imshow(images[i], 'gray')
        #     plt.title(titles[i], fontsize=8)
        #     plt.xticks([]), plt.yticks([])  # 隱藏坐標軸
        # plt.show()

        # Otsu閾值
        _, th = cv2.threshold(img, 0, 255, cv2.THRESH_TOZERO + cv2.THRESH_OTSU)
        cv2.imshow('Binary image', th)
        return th

    # 邊緣檢測 
開發者ID:CherryXuan,項目名稱:Pointer-meter-identification-and-reading,代碼行數:25,代碼來源:MeterReader.py

示例3: flow2RGB

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def flow2RGB(flow, max_flow_mag = 5):
    """ Color-coded visualization of optical flow fields

        # Arguments
            flow: array of shape [:,:,2] containing optical flow
            max_flow_mag: maximal expected flow magnitude used to normalize. If max_flow_mag < 0 the maximal
            magnitude of the optical flow field will be used
    """
    hsv_mat = np.ones(shape=(flow.shape[0], flow.shape[1], 3), dtype=np.float32) * 255
    ee = cv2.sqrt(flow[:, :, 0] * flow[:, :, 0] + flow[:, :, 1] * flow[:, :, 1])
    angle = np.arccos(flow[:, :, 0]/ ee)
    angle[flow[:, :, 0] == 0] = 0
    angle[flow[:, :, 1] == 0] = 6.2831853 - angle[flow[:, :, 1] == 0]
    angle = angle * 180 / 3.141
    hsv_mat[:,:,0] = angle
    if max_flow_mag < 0:
        max_flow_mag = ee.max()
    hsv_mat[:,:,1] = ee * 255.0 / max_flow_mag
    ret, hsv_mat[:,:,1] = cv2.threshold(src=hsv_mat[:,:,1], maxval=255, thresh=255, type=cv2.THRESH_TRUNC )
    rgb_mat = cv2.cvtColor(hsv_mat.astype(np.uint8), cv2.COLOR_HSV2BGR)
    return rgb_mat 
開發者ID:tsenst,項目名稱:CrowdFlow,代碼行數:23,代碼來源:util.py

示例4: main

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def main():
    threshold = 0
    max_value = 255

    image = cv2.imread("../data/7.1.08.tiff", 0)

    # when applying OTSU threshold, set threshold to 0.

    _, output1 = cv2.threshold(image, threshold, max_value, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    _, output2 = cv2.threshold(image, threshold, max_value, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    _, output3 = cv2.threshold(image, threshold, max_value, cv2.THRESH_TOZERO + cv2.THRESH_OTSU)
    _, output4 = cv2.threshold(image, threshold, max_value, cv2.THRESH_TOZERO_INV + cv2.THRESH_OTSU)
    _, output5 = cv2.threshold(image, threshold, max_value, cv2.THRESH_TRUNC + cv2.THRESH_OTSU)

    images = [image, output1, output2, output3, output4, output5]
    titles = ["Orignals", "Binary", "Binary Inverse", "TOZERO", "TOZERO INV", "TRUNC"]

    for i in range(6):
        plt.subplot(3, 2, i + 1)
        plt.imshow(images[i], cmap='gray')
        plt.title(titles[i])

    plt.show() 
開發者ID:amarlearning,項目名稱:Finger-Detection-and-Tracking,代碼行數:25,代碼來源:OTSUThresholding.py

示例5: spatter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def spatter(x, severity=1):
    c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
         (0.65, 0.3, 3, 0.68, 0.6, 0),
         (0.65, 0.3, 2, 0.68, 0.5, 0),
         (0.65, 0.3, 1, 0.65, 1.5, 1),
         (0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
    x = np.array(x, dtype=np.float32) / 255.

    liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])

    liquid_layer = gaussian(liquid_layer, sigma=c[2])
    liquid_layer[liquid_layer < c[3]] = 0
    if c[5] == 0:
        liquid_layer = (liquid_layer * 255).astype(np.uint8)
        dist = 255 - cv2.Canny(liquid_layer, 50, 150)
        dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
        _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
        dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
        dist = cv2.equalizeHist(dist)
        ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
        dist = cv2.filter2D(dist, cv2.CV_8U, ker)
        dist = cv2.blur(dist, (3, 3)).astype(np.float32)

        m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
        m /= np.max(m, axis=(0, 1))
        m *= c[4]

        # water is pale turqouise
        color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1])), axis=2)

        color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
        x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)

        return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
    else:
        m = np.where(liquid_layer > c[3], 1, 0)
        m = gaussian(m.astype(np.float32), sigma=c[4])
        m[m < 0.8] = 0

        # mud brown
        color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
                                42 / 255. * np.ones_like(x[..., :1]),
                                20 / 255. * np.ones_like(x[..., :1])), axis=2)

        color *= m[..., np.newaxis]
        x *= (1 - m[..., np.newaxis])

        return np.clip(x + color, 0, 1) * 255 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:52,代碼來源:corruptions.py

示例6: spatter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def spatter(x, severity=1):
    c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
         (0.65, 0.3, 3, 0.68, 0.6, 0),
         (0.65, 0.3, 2, 0.68, 0.5, 0),
         (0.65, 0.3, 1, 0.65, 1.5, 1),
         (0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
    x = np.array(x, dtype=np.float32) / 255.

    liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])

    liquid_layer = gaussian(liquid_layer, sigma=c[2])
    liquid_layer[liquid_layer < c[3]] = 0
    if c[5] == 0:
        liquid_layer = (liquid_layer * 255).astype(np.uint8)
        dist = 255 - cv2.Canny(liquid_layer, 50, 150)
        dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
        _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
        dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
        dist = cv2.equalizeHist(dist)
        #     ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
        #     ker -= np.mean(ker)
        ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
        dist = cv2.filter2D(dist, cv2.CV_8U, ker)
        dist = cv2.blur(dist, (3, 3)).astype(np.float32)

        m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
        m /= np.max(m, axis=(0, 1))
        m *= c[4]

        # water is pale turqouise
        color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1])), axis=2)

        color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
        x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)

        return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
    else:
        m = np.where(liquid_layer > c[3], 1, 0)
        m = gaussian(m.astype(np.float32), sigma=c[4])
        m[m < 0.8] = 0
        #         m = np.abs(m) ** (1/c[4])

        # mud brown
        color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
                                42 / 255. * np.ones_like(x[..., :1]),
                                20 / 255. * np.ones_like(x[..., :1])), axis=2)

        color *= m[..., np.newaxis]
        x *= (1 - m[..., np.newaxis])

        return np.clip(x + color, 0, 1) * 255 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:55,代碼來源:make_imagenet_c.py

示例7: spatter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def spatter(x, severity=1):
    c = [(0.62,0.1,0.7,0.7,0.5,0),
         (0.65,0.1,0.8,0.7,0.5,0),
         (0.65,0.3,1,0.69,0.5,0),
         (0.65,0.1,0.7,0.69,0.6,1),
         (0.65,0.1,0.5,0.68,0.6,1)][severity - 1]
    x = np.array(x, dtype=np.float32) / 255.

    liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])

    liquid_layer = gaussian(liquid_layer, sigma=c[2])
    liquid_layer[liquid_layer < c[3]] = 0
    if c[5] == 0:
        liquid_layer = (liquid_layer * 255).astype(np.uint8)
        dist = 255 - cv2.Canny(liquid_layer, 50, 150)
        dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
        _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
        dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
        dist = cv2.equalizeHist(dist)
        #     ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
        #     ker -= np.mean(ker)
        ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
        dist = cv2.filter2D(dist, cv2.CV_8U, ker)
        dist = cv2.blur(dist, (3, 3)).astype(np.float32)

        m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
        m /= np.max(m, axis=(0, 1))
        m *= c[4]

        # water is pale turqouise
        color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1])), axis=2)

        color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
        x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)

        return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
    else:
        m = np.where(liquid_layer > c[3], 1, 0)
        m = gaussian(m.astype(np.float32), sigma=c[4])
        m[m < 0.8] = 0
        #         m = np.abs(m) ** (1/c[4])

        # mud brown
        color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
                                42 / 255. * np.ones_like(x[..., :1]),
                                20 / 255. * np.ones_like(x[..., :1])), axis=2)

        color *= m[..., np.newaxis]
        x *= (1 - m[..., np.newaxis])

        return np.clip(x + color, 0, 1) * 255 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:55,代碼來源:make_cifar_c.py

示例8: spatter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def spatter(x, severity=1):
    c = [(0.62,0.1,0.7,0.7,0.6,0),
         (0.65,0.1,0.8,0.7,0.6,0),
         (0.65,0.3,1,0.69,0.6,0),
         (0.65,0.1,0.7,0.68,0.6,1),
         (0.65,0.1,0.5,0.67,0.6,1)][severity - 1]
    x = np.array(x, dtype=np.float32) / 255.

    liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])

    liquid_layer = gaussian(liquid_layer, sigma=c[2])
    liquid_layer[liquid_layer < c[3]] = 0
    if c[5] == 0:
        liquid_layer = (liquid_layer * 255).astype(np.uint8)
        dist = 255 - cv2.Canny(liquid_layer, 50, 150)
        dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
        _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
        dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
        dist = cv2.equalizeHist(dist)
        #     ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
        #     ker -= np.mean(ker)
        ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
        dist = cv2.filter2D(dist, cv2.CV_8U, ker)
        dist = cv2.blur(dist, (3, 3)).astype(np.float32)

        m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
        m /= np.max(m, axis=(0, 1))
        m *= c[4]

        # water is pale turqouise
        color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1])), axis=2)

        color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
        x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)

        return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
    else:
        m = np.where(liquid_layer > c[3], 1, 0)
        m = gaussian(m.astype(np.float32), sigma=c[4])
        m[m < 0.8] = 0
        #         m = np.abs(m) ** (1/c[4])

        # mud brown
        color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
                                42 / 255. * np.ones_like(x[..., :1]),
                                20 / 255. * np.ones_like(x[..., :1])), axis=2)

        color *= m[..., np.newaxis]
        x *= (1 - m[..., np.newaxis])

        return np.clip(x + color, 0, 1) * 255 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:55,代碼來源:make_tinyimagenet_c.py

示例9: spatter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import THRESH_TRUNC [as 別名]
def spatter(x, severity=1):
    c = [(0.65,0.3,4,0.69,0.9,0),
         (0.65,0.3,3.5,0.68,0.9,0),
         (0.65,0.3,3,0.68,0.8,0),
         (0.65,0.3,1.2,0.65,1.8,1),
         (0.67,0.4,1.2,0.65,1.8,1)][severity - 1]
    x = np.array(x, dtype=np.float32) / 255.

    liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])

    liquid_layer = gaussian(liquid_layer, sigma=c[2])
    liquid_layer[liquid_layer < c[3]] = 0
    if c[5] == 0:
        liquid_layer = (liquid_layer * 255).astype(np.uint8)
        dist = 255 - cv2.Canny(liquid_layer, 50, 150)
        dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
        _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
        dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
        dist = cv2.equalizeHist(dist)
        #     ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
        #     ker -= np.mean(ker)
        ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
        dist = cv2.filter2D(dist, cv2.CV_8U, ker)
        dist = cv2.blur(dist, (3, 3)).astype(np.float32)

        m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
        m /= np.max(m, axis=(0, 1))
        m *= c[4]

        # water is pale turqouise
        color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1])), axis=2)

        color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
        x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)

        return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
    else:
        m = np.where(liquid_layer > c[3], 1, 0)
        m = gaussian(m.astype(np.float32), sigma=c[4])
        m[m < 0.8] = 0
        #         m = np.abs(m) ** (1/c[4])

        # mud brown
        color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
                                42 / 255. * np.ones_like(x[..., :1]),
                                20 / 255. * np.ones_like(x[..., :1])), axis=2)

        color *= m[..., np.newaxis]
        x *= (1 - m[..., np.newaxis])

        return np.clip(x + color, 0, 1) * 255 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:55,代碼來源:make_imagenet_c_inception.py


注:本文中的cv2.THRESH_TRUNC屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。