當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.TERM_CRITERIA_COUNT屬性代碼示例

本文整理匯總了Python中cv2.TERM_CRITERIA_COUNT屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.TERM_CRITERIA_COUNT屬性的具體用法?Python cv2.TERM_CRITERIA_COUNT怎麽用?Python cv2.TERM_CRITERIA_COUNT使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cv2的用法示例。


在下文中一共展示了cv2.TERM_CRITERIA_COUNT屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self, min_area=400, min_shift2=5):
        """Constructor

            This method initializes the multiple-objects tracking algorithm.

            :param min_area: Minimum area for a proto-object contour to be
                             considered a real object
            :param min_shift2: Minimum distance for a proto-object to drift
                               from frame to frame ot be considered a real
                               object
        """
        self.object_roi = []
        self.object_box = []

        self.min_cnt_area = min_area
        self.min_shift2 = min_shift2

        # Setup the termination criteria, either 100 iteration or move by at
        # least 1 pt
        self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
                          100, 1) 
開發者ID:PacktPublishing,項目名稱:OpenCV-Computer-Vision-Projects-with-Python,代碼行數:23,代碼來源:tracking.py

示例2: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self):

        self.of_params = {'st_pars': dict(maxCorners=200, qualityLevel=0.2,
                                          minDistance=7, blockSize=21),
                          'lk_pars': dict(winSize=(20, 20), maxLevel=2,
                                          criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0))}

        self.extrapolation = "linear"

        self.warper = "affine"

        self.input_data = None

        self.scaler = RYScaler

        self.inverse_scaler = inv_RYScaler

        self.lead_steps = 12 
開發者ID:hydrogo,項目名稱:rainymotion,代碼行數:20,代碼來源:models.py

示例3: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self, piscopeController):
        Thread.__init__(self)
        self.mutex = Lock()

        self.piscopeController = piscopeController
        self.setDaemon(True) # terminate on exit
        self.status = "Initial"
        self.reset()

        self.lk_params = dict( winSize  = (15, 15),
                  maxLevel = 2,
                  criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

        self.feature_params = dict( maxCorners = 5,
                       qualityLevel = 0.3,
                       minDistance = 7,
                       blockSize = 7 ) 
開發者ID:tobykurien,項目名稱:pi-tracking-telescope,代碼行數:19,代碼來源:tracking.py

示例4: align

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def align(self, blob):
		"""Aligns the positions of active and inactive tracks depending on camera motion."""
		if self.im_index > 0:
			im1 = np.transpose(self.last_image.cpu().numpy(), (1, 2, 0))
			im2 = np.transpose(blob['img'][0].cpu().numpy(), (1, 2, 0))
			im1_gray = cv2.cvtColor(im1, cv2.COLOR_RGB2GRAY)
			im2_gray = cv2.cvtColor(im2, cv2.COLOR_RGB2GRAY)
			warp_matrix = np.eye(2, 3, dtype=np.float32)
			criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, self.number_of_iterations,  self.termination_eps)
			cc, warp_matrix = cv2.findTransformECC(im1_gray, im2_gray, warp_matrix, self.warp_mode, criteria)
			warp_matrix = torch.from_numpy(warp_matrix)

			for t in self.tracks:
				t.pos = warp_pos(t.pos, warp_matrix)
				# t.pos = clip_boxes(Variable(pos), blob['im_info'][0][:2]).data

			if self.do_reid:
				for t in self.inactive_tracks:
					t.pos = warp_pos(t.pos, warp_matrix)

			if self.motion_model_cfg['enabled']:
				for t in self.tracks:
					for i in range(len(t.last_pos)):
						t.last_pos[i] = warp_pos(t.last_pos[i], warp_matrix) 
開發者ID:phil-bergmann,項目名稱:tracking_wo_bnw,代碼行數:26,代碼來源:tracker.py

示例5: feature_tracking

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def feature_tracking(img1,img2, points1,points2,status): #track matching features
        err = np.array([])
        winSize = (15,15)
        maxLevel = 3
        termcriteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.01))
        cv2.calcOpticalFlowPyrLK(img1, img2, points1, points2, status, err, winSize, maxLevel, termcriteria, 0, 0.001)
        indexcorrection = 0
        #remove bad points 
        for i in range(len(status)):
                pt = points2[i - indexcorrection]
                if (status[i]==0 or pt[0,0]<0 or pt[0,1]<0):
                        if pt[0,0]<0 or pt[0,1]<0:
                                status[i]=0
                        np.delete(points1, i-indexcorrection)
                        np.delete(points2, i-indexcorrection)
                        indexcorrection+=1 
開發者ID:karanchawla,項目名稱:Monocular-Visual-Inertial-Odometry,代碼行數:18,代碼來源:vo.py

示例6: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self):
    self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
    self.tracks = []
    self.current_track = 0 
開發者ID:google,項目名稱:automl-video-ondevice,代碼行數:6,代碼來源:camshift_object_tracker.py

示例7: train

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def train(self, samples, responses):
        sample_n, var_n = samples.shape
        new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
        layer_sizes = np.int32([var_n, 100, 100, self.class_n])

        self.model.setLayerSizes(layer_sizes)
        self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
        self.model.setBackpropMomentumScale(0.0)
        self.model.setBackpropWeightScale(0.001)
        self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
        self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)

        self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses)) 
開發者ID:makelove,項目名稱:OpenCV-Python-Tutorial,代碼行數:15,代碼來源:letter_recog.py

示例8: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self):
        self.track_len = 5
        self.tracks = []
        self.lk_params = dict(winSize=(15, 15),
                              maxLevel=2,
                              criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
        self.feature_params = dict(maxCorners=500,
                                   qualityLevel=0.3,
                                   minDistance=7,
                                   blockSize=7) 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:12,代碼來源:optical_flow_tracker.py

示例9: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self, videoSource, featurePtMask=None, verbosity=0):
    # cap the length of optical flow tracks
    self.maxTrackLength = 10

    # detect feature points in intervals of frames; adds robustness for
    # when feature points disappear.
    self.detectionInterval = 5

    # Params for Shi-Tomasi corner (feature point) detection
    self.featureParams = dict(
        maxCorners=500,
        qualityLevel=0.3,
        minDistance=7,
        blockSize=7
    )
    # Params for Lucas-Kanade optical flow
    self.lkParams = dict(
        winSize=(15, 15),
        maxLevel=2,
        criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)
    )
    # # Alternatively use a fast feature detector
    # self.fast = cv2.FastFeatureDetector_create(500)

    self.verbosity = verbosity

    (self.videoStream,
     self.width,
     self.height,
     self.featurePtMask) = self._initializeCamera(videoSource) 
開發者ID:BoltzmannBrain,項目名稱:self-driving,代碼行數:32,代碼來源:optical_flow.py

示例10: estimate_loop

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def estimate_loop(self):
        opt_flow_params = dict(winSize=(15,15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
        while not self.stopped:
            frame = self.video_feed.read()
            frame_grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            # Pull data from each human and bodypart -> put into np array w/shape (num_humans, 18, 2) and reshape to (num_humans 18, 1, 2) for use by optical flow
            with self.lock:
                all_human_points = np.asarray([np.asarray([[[body_part.x * self.frame_shape[1], body_part.y * self.frame_shape[0]]] for key, body_part in human.body_parts.iteritems()], dtype=np.float32) for human in self.humans])
                for idx, human_points in enumerate(all_human_points):
                        p1, st, err = cv2.calcOpticalFlowPyrLK(self.old_frame_grey, frame_grey, human_points, None, **opt_flow_params)
                        self.repack_humans(p1, idx)

                        # Grab the points that have gone out of frame
                        oof_points = p1[st!=1]
                        if oof_points.shape != 0:
                            # Get all the matches
                            tmp = np.isin(human_points, oof_points)
                            # Get the indexes of those matches
                            msng_idxz = [msng for msng in range(len(human_points)) if tmp[msng].all()]
                            #print "msng_idxz %s" % str(msng_idxz)
                            cur_part_exist = self.humans[idx].body_parts.keys()
                            for foo_idx in range(len(msng_idxz)):
                                del self.humans[idx].body_parts[cur_part_exist[msng_idxz[foo_idx]]]
                        if len(self.humans[idx].body_parts.keys()) == 0:
                            del self.humans[idx]

            self.old_frame = frame
            self.old_frame_grey = frame_grey.copy() 
開發者ID:NVIDIA-AI-IOT,項目名稱:Gesture-Recognition,代碼行數:30,代碼來源:OptFlowEst.py

示例11: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self, flags_handler, points_to_track, input_image):
        self.logger = logging.getLogger('tracker_handler')
        self.flags_handler = flags_handler
        self.points_to_track = points_to_track

        self._input_image = input_image
        self._old_gray = None
        self._p0 = None

        self.lk_params = dict(winSize=(15, 15),
                              maxLevel=2,
                              criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

        self.track(self.points_to_track, self._input_image) 
開發者ID:GalBrandwine,項目名稱:HalloPy,代碼行數:16,代碼來源:controller.py

示例12: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self, chn, c, e, **kwargs):
        self.chn = chn
        self.m = cv2.ml.SVM_create()
        self.m.setType(cv2.ml.SVM_EPS_SVR)
        self.m.setC(c)
        self.m.setDegree(1)
        self.m.setP(e)
        max_iter = kwargs.get('max_iter', 10000)
        self.m.setTermCriteria(
            (cv2.TERM_CRITERIA_COUNT + cv2.TERM_CRITERIA_EPS, max_iter, 1e-09)) 
開發者ID:Sachini,項目名稱:ronin,代碼行數:12,代碼來源:baseline_ridi.py

示例13: processImage

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def processImage(fn):
        print('processing %s... ' % fn)
        img = cv.imread(fn, 0)
        if img is None:
            print("Failed to load", fn)
            return None

        assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0]))
        found, corners = cv.findChessboardCorners(img, pattern_size)
        if found:
            term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
            cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)

        if debug_dir:
            vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
            cv.drawChessboardCorners(vis, pattern_size, corners, found)
            _path, name, _ext = splitfn(fn)
            outfile = os.path.join(debug_dir, name + '_chess.png')
            cv.imwrite(outfile, vis)

        if not found:
            print('chessboard not found')
            return None

        print('           %s... OK' % fn)
        return (corners.reshape(-1, 2), pattern_points) 
開發者ID:luigifreda,項目名稱:pyslam,代碼行數:28,代碼來源:calibrate.py

示例14: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def __init__(self, num_features=kMinNumFeatureDefault, 
                       num_levels = 3,                             # number of pyramid levels for detector  
                       scale_factor = 1.2,                         # detection scale factor (if it can be set, otherwise it is automatically computed) 
                       detector_type = FeatureDetectorTypes.FAST, 
                       descriptor_type = FeatureDescriptorTypes.NONE, 
                       match_ratio_test = kRatioTest,
                       tracker_type = FeatureTrackerTypes.LK):                         
        super().__init__(num_features=num_features, 
                         num_levels=num_levels, 
                         scale_factor=scale_factor, 
                         detector_type=detector_type, 
                         descriptor_type=descriptor_type, 
                         tracker_type=tracker_type)
        self.feature_manager = feature_manager_factory(num_features=num_features, 
                                                       num_levels=num_levels, 
                                                       scale_factor=scale_factor, 
                                                       detector_type=detector_type, 
                                                       descriptor_type=descriptor_type)   
        #if num_levels < 3:
        #    Printer.green('LkFeatureTracker: forcing at least 3 levels on LK pyr optic flow') 
        #    num_levels = 3          
        optic_flow_num_levels = max(kLkPyrOpticFlowNumLevelsMin,num_levels)
        Printer.green('LkFeatureTracker: num levels on LK pyr optic flow: ', optic_flow_num_levels)
        # we use LK pyr optic flow for matching     
        self.lk_params = dict(winSize  = (21, 21), 
                              maxLevel = optic_flow_num_levels,
                              criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.01))        

    # out: keypoints and empty descriptors 
開發者ID:luigifreda,項目名稱:pyslam,代碼行數:31,代碼來源:feature_tracker.py

示例15: test_features

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import TERM_CRITERIA_COUNT [as 別名]
def test_features():
    from atx.drivers.android_minicap import AndroidDeviceMinicap
    cv2.namedWindow("preview")
    d = AndroidDeviceMinicap()

    # r, h, c, w = 200, 100, 200, 100
    # track_window = (c, r, w, h)
    # oldimg = cv2.imread('base1.png')
    # roi = oldimg[r:r+h, c:c+w]
    # hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
    # mask = cv2.inRange(hsv_roi, 0, 255)
    # roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])
    # cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
    # term_cirt = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,  10, 1)


    while True:
        try:
            w, h = d._screen.shape[:2]
            img = cv2.resize(d._screen, (h/2, w/2))
            cv2.imshow('preview', img)

            hist = cv2.calcHist([img], [0], None, [256], [0,256])
            plt.plot(plt.hist(hist.ravel(), 256))
            plt.show()
            # if img.shape == oldimg.shape:
            #     # hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
            #     # ret, track_window = cv2.meanShift(hsv, track_window, term_cirt)
            #     # x, y, w, h = track_window
            #     cv2.rectangle(img, (x, y), (x+w, y+h), 255, 2)
            #     cv2.imshow('preview', img)
            # # cv2.imshow('preview', img)
            cv2.waitKey(1)
        except KeyboardInterrupt:
            break

    cv2.destroyWindow('preview') 
開發者ID:NetEaseGame,項目名稱:ATX,代碼行數:39,代碼來源:test_monkey.py


注:本文中的cv2.TERM_CRITERIA_COUNT屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。