當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.NORMAL_CLONE屬性代碼示例

本文整理匯總了Python中cv2.NORMAL_CLONE屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.NORMAL_CLONE屬性的具體用法?Python cv2.NORMAL_CLONE怎麽用?Python cv2.NORMAL_CLONE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cv2的用法示例。


在下文中一共展示了cv2.NORMAL_CLONE屬性的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: merge_img

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import NORMAL_CLONE [as 別名]
def merge_img(src_img, dst_img, dst_matrix, dst_points, blur_detail_x=None, blur_detail_y=None, mat_multiple=None):
    face_mask = np.zeros(src_img.shape, dtype=src_img.dtype)

    for group in core.OVERLAY_POINTS:
        cv2.fillConvexPoly(face_mask, cv2.convexHull(dst_matrix[group]), (255, 255, 255))

    r = cv2.boundingRect(np.float32([dst_points[:core.FACE_END]]))

    center = (r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))

    if mat_multiple:
        mat = cv2.getRotationMatrix2D(center, 0, mat_multiple)
        face_mask = cv2.warpAffine(face_mask, mat, (face_mask.shape[1], face_mask.shape[0]))

    if blur_detail_x and blur_detail_y:
        face_mask = cv2.blur(face_mask, (blur_detail_x, blur_detail_y), center)

    return cv2.seamlessClone(np.uint8(dst_img), src_img, face_mask, center, cv2.NORMAL_CLONE) 
開發者ID:gyp03,項目名稱:yry,代碼行數:20,代碼來源:morpher.py

示例2: merge_img

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import NORMAL_CLONE [as 別名]
def merge_img(src_img, dst_img, dst_matrix, dst_points, k_size=None, mat_multiple=None):
    face_mask = np.zeros(src_img.shape, dtype=src_img.dtype)

    for group in core.OVERLAY_POINTS:
        cv2.fillConvexPoly(face_mask, cv2.convexHull(dst_matrix[group]), (255, 255, 255))

    r = cv2.boundingRect(np.float32([dst_points[:core.FACE_END]]))

    center = (r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))

    if mat_multiple:
        mat = cv2.getRotationMatrix2D(center, 0, mat_multiple)
        face_mask = cv2.warpAffine(face_mask, mat, (face_mask.shape[1], face_mask.shape[0]))

    if k_size:
        face_mask = cv2.blur(face_mask, k_size, center)

    return cv2.seamlessClone(np.uint8(dst_img), src_img, face_mask, center, cv2.NORMAL_CLONE) 
開發者ID:tonyiweb,項目名稱:face_merge_master,代碼行數:20,代碼來源:morpher.py

示例3: process

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import NORMAL_CLONE [as 別名]
def process(old_face, new_face, raw_mask):
        height, width, _ = old_face.shape
        height = height // 2
        width = width // 2

        y_indices, x_indices, _ = np.nonzero(raw_mask)
        y_crop = slice(np.min(y_indices), np.max(y_indices))
        x_crop = slice(np.min(x_indices), np.max(x_indices))
        y_center = int(np.rint((np.max(y_indices) + np.min(y_indices)) / 2 + height))
        x_center = int(np.rint((np.max(x_indices) + np.min(x_indices)) / 2 + width))

        insertion = np.rint(new_face[y_crop, x_crop] * 255.0).astype("uint8")
        insertion_mask = np.rint(raw_mask[y_crop, x_crop] * 255.0).astype("uint8")
        insertion_mask[insertion_mask != 0] = 255
        prior = np.rint(np.pad(old_face * 255.0,
                               ((height, height), (width, width), (0, 0)),
                               'constant')).astype("uint8")

        blended = cv2.seamlessClone(insertion,  # pylint: disable=no-member
                                    prior,
                                    insertion_mask,
                                    (x_center, y_center),
                                    cv2.NORMAL_CLONE)  # pylint: disable=no-member
        blended = blended[height:-height, width:-width]

        return blended.astype("float32") / 255.0 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:28,代碼來源:seamless_clone.py

示例4: poisson_blend

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import NORMAL_CLONE [as 別名]
def poisson_blend(input, output, mask):
    """
    * inputs:
        - input (torch.Tensor, required)
                Input tensor of Completion Network, whose shape = (N, 3, H, W).
        - output (torch.Tensor, required)
                Output tensor of Completion Network, whose shape = (N, 3, H, W).
        - mask (torch.Tensor, required)
                Input mask tensor of Completion Network, whose shape = (N, 1, H, W).
    * returns:
                Output image tensor of shape (N, 3, H, W) inpainted with poisson image editing method.
    """
    input = input.clone().cpu()
    output = output.clone().cpu()
    mask = mask.clone().cpu()
    mask = torch.cat((mask, mask, mask), dim=1) # convert to 3-channel format
    num_samples = input.shape[0]
    ret = []
    for i in range(num_samples):
        dstimg = transforms.functional.to_pil_image(input[i])
        dstimg = np.array(dstimg)[:, :, [2, 1, 0]]
        srcimg = transforms.functional.to_pil_image(output[i])
        srcimg = np.array(srcimg)[:, :, [2, 1, 0]]
        msk = transforms.functional.to_pil_image(mask[i])
        msk = np.array(msk)[:, :, [2, 1, 0]]
        # compute mask's center
        xs, ys = [], []
        for j in range(msk.shape[0]):
            for k in range(msk.shape[1]):
                if msk[j, k, 0] == 255:
                    ys.append(j)
                    xs.append(k)
        xmin, xmax = min(xs), max(xs)
        ymin, ymax = min(ys), max(ys)
        center = ((xmax + xmin) // 2, (ymax + ymin) // 2)
        dstimg = cv2.inpaint(dstimg, msk[:, :, 0], 1, cv2.INPAINT_TELEA)
        out = cv2.seamlessClone(srcimg, dstimg, msk, center, cv2.NORMAL_CLONE)
        out = out[:, :, [2, 1, 0]]
        out = transforms.functional.to_tensor(out)
        out = torch.unsqueeze(out, dim=0)
        ret.append(out)
    ret = torch.cat(ret, dim=0)
    return ret 
開發者ID:otenim,項目名稱:GLCIC-PyTorch,代碼行數:45,代碼來源:utils.py

示例5: draw_text_seamless

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import NORMAL_CLONE [as 別名]
def draw_text_seamless(self, font, bg, word, word_color, word_height, word_width, offset):
        # For better seamlessClone
        seamless_offset = 6

        # Draw text on a white image, than draw it on background
        if self.is_bgr():
            white_bg = np.ones((word_height + seamless_offset, word_width + seamless_offset, 3)) * 255
        else:
            white_bg = np.ones((word_height + seamless_offset, word_width + seamless_offset)) * 255

        text_img = Image.fromarray(np.uint8(white_bg))
        draw = ImageDraw.Draw(text_img)

        # draw.text((0 + seamless_offset // 2, 0 - offset[1] + seamless_offset // 2), word,
        #           fill=word_color, font=font)

        self.draw_text_wrapper(draw, word,
                               0 + seamless_offset // 2,
                               0 - offset[1] + seamless_offset // 2,
                               font, word_color)

        # assume whole text_img as mask
        text_img = np.array(text_img).astype(np.uint8)
        text_mask = 255 * np.ones(text_img.shape, text_img.dtype)

        # This is where the CENTER of the airplane will be placed
        center = (bg.shape[1] // 2, bg.shape[0] // 2)

        # opencv seamlessClone require bgr image
        if not self.is_bgr():
            text_img_bgr = np.ones((text_img.shape[0], text_img.shape[1], 3), np.uint8)
            bg_bgr = np.ones((bg.shape[0], bg.shape[1], 3), np.uint8)
            cv2.cvtColor(text_img, cv2.COLOR_GRAY2BGR, text_img_bgr)
            cv2.cvtColor(bg, cv2.COLOR_GRAY2BGR, bg_bgr)
        else:
            text_img_bgr = text_img
            bg_bgr = bg

        flag = np.random.choice([
            cv2.NORMAL_CLONE,
            cv2.MIXED_CLONE,
            cv2.MONOCHROME_TRANSFER
        ])

        mixed_clone = cv2.seamlessClone(text_img_bgr, bg_bgr, text_mask, center, flag)

        if not self.is_bgr():
            return cv2.cvtColor(mixed_clone, cv2.COLOR_BGR2GRAY)
        else:
            return mixed_clone 
開發者ID:Sanster,項目名稱:text_renderer,代碼行數:52,代碼來源:renderer.py


注:本文中的cv2.NORMAL_CLONE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。