本文整理匯總了Python中cv2.MORPH_CLOSE屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.MORPH_CLOSE屬性的具體用法?Python cv2.MORPH_CLOSE怎麽用?Python cv2.MORPH_CLOSE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類cv2
的用法示例。
在下文中一共展示了cv2.MORPH_CLOSE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _morphological_process
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def _morphological_process(image, kernel_size=5):
"""
morphological process to fill the hole in the binary segmentation result
:param image:
:param kernel_size:
:return:
"""
if len(image.shape) == 3:
raise ValueError('Binary segmentation result image should be a single channel image')
if image.dtype is not np.uint8:
image = np.array(image, np.uint8)
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
# close operation fille hole
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, iterations=1)
return closing
示例2: predict0
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def predict0():
Vnet3d = Vnet3dModule(256, 256, 64, inference=True, model_path="model\\Vnet3dModule.pd")
for filenumber in range(30):
batch_xs = np.zeros(shape=(64, 256, 256))
for index in range(64):
imgs = cv2.imread(
"D:\Data\PROMISE2012\Vnet3d_data\\test\image\\" + str(filenumber) + "\\" + str(index) + ".bmp", 0)
batch_xs[index, :, :] = imgs[128:384, 128:384]
predictvalue = Vnet3d.prediction(batch_xs)
for index in range(64):
result = np.zeros(shape=(512, 512), dtype=np.uint8)
result[128:384, 128:384] = predictvalue[index]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
result = cv2.morphologyEx(result, cv2.MORPH_CLOSE, kernel)
cv2.imwrite(
"D:\Data\PROMISE2012\Vnet3d_data\\test\image\\" + str(filenumber) + "\\" + str(index) + "mask.bmp",
result)
開發者ID:junqiangchen,項目名稱:LiTS---Liver-Tumor-Segmentation-Challenge,代碼行數:21,代碼來源:vnet3d_train_predict.py
示例3: fill_break_line
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def fill_break_line(cw_mask):
broken_line_h = np.array([[0,0,0,0,0],
[0,0,0,0,0],
[1,0,0,0,1],
[0,0,0,0,0],
[0,0,0,0,0]], dtype=np.uint8)
broken_line_h2 = np.array([[0,0,0,0,0],
[0,0,0,0,0],
[1,1,0,1,1],
[0,0,0,0,0],
[0,0,0,0,0]], dtype=np.uint8)
broken_line_v = np.transpose(broken_line_h)
broken_line_v2 = np.transpose(broken_line_h2)
cw_mask = cv2.morphologyEx(cw_mask, cv2.MORPH_CLOSE, broken_line_h)
cw_mask = cv2.morphologyEx(cw_mask, cv2.MORPH_CLOSE, broken_line_v)
cw_mask = cv2.morphologyEx(cw_mask, cv2.MORPH_CLOSE, broken_line_h2)
cw_mask = cv2.morphologyEx(cw_mask, cv2.MORPH_CLOSE, broken_line_v2)
return cw_mask
示例4: sobelOperT
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def sobelOperT(self, img, blursize, morphW, morphH):
'''
No different with sobelOper ?
'''
blur = cv2.GaussianBlur(img, (blursize, blursize), 0, 0, cv2.BORDER_DEFAULT)
if len(blur.shape) == 3:
gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
else:
gray = blur
x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, 3)
absX = cv2.convertScaleAbs(x)
grad = cv2.addWeighted(absX, 1, 0, 0, 0)
_, threshold = cv2.threshold(grad, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (morphW, morphH))
threshold = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, element)
return threshold
示例5: colorSearch
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def colorSearch(self, src, color, out_rect):
"""
:param src:
:param color:
:param out_rect: minAreaRect
:return: binary
"""
color_morph_width = 10
color_morph_height = 2
match_gray = colorMatch(src, color, False)
_, src_threshold = cv2.threshold(match_gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (color_morph_width, color_morph_height))
src_threshold = cv2.morphologyEx(src_threshold, cv2.MORPH_CLOSE, element)
out = src_threshold.copy()
_, contours, _ = cv2.findContours(src_threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
mr = cv2.minAreaRect(cnt)
if self.verifySizes(mr):
out_rect.append(mr)
return out
示例6: verticalEdgeDetection
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def verticalEdgeDetection(image):
image_sobel = cv2.Sobel(image.copy(),cv2.CV_8U,1,0)
# image = auto_canny(image_sobel)
# img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT
# canny_image = auto_canny(image)
flag,thres = cv2.threshold(image_sobel,0,255,cv2.THRESH_OTSU|cv2.THRESH_BINARY)
print(flag)
flag,thres = cv2.threshold(image_sobel,int(flag*0.7),255,cv2.THRESH_BINARY)
# thres = simpleThres(image_sobel)
kernal = np.ones(shape=(3,15))
thres = cv2.morphologyEx(thres,cv2.MORPH_CLOSE,kernal)
return thres
#確定粗略的左右邊界
示例7: backprojection
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def backprojection(target, roihist):
'''圖像預處理'''
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# Now convolute with circular disc
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7))
cv2.filter2D(dst,-1,disc,dst)
# threshold and binary AND
ret,binary = cv2.threshold(dst,80,255,0)
# 創建 核
kernel = np.ones((5,5), np.uint8)
iter_time = 1
# 閉運算
binary = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel,iterations=iter_time)
thresh = cv2.merge((binary,binary,binary))
target_filter = cv2.bitwise_and(target,thresh)
return binary, target_filter
示例8: _morphological_process
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def _morphological_process(image, kernel_size=5):
"""
:param image:
:param kernel_size:
:return:
"""
if image.dtype is not np.uint8:
image = np.array(image, np.uint8)
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
# close operation fille hole
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, iterations=1)
return closing
示例9: get_target_centers
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def get_target_centers(img):
# Hide buff line
# img[0:70, 0:500] = (0, 0, 0)
# Hide your name in first camera position (default)
img[210:230, 350:440] = (0, 0, 0)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# cv2.imwrite('1_gray_img.png', gray)
# Find only white text
ret, threshold1 = cv2.threshold(gray, 252, 255, cv2.THRESH_BINARY)
# cv2.imwrite('2_threshold1_img.png', threshold1)
# Morphological transformation
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 5))
closed = cv2.morphologyEx(threshold1, cv2.MORPH_CLOSE, kernel)
# cv2.imwrite('3_morphologyEx_img.png', closed)
closed = cv2.erode(closed, kernel, iterations=1)
# cv2.imwrite('4_erode_img.png', closed)
closed = cv2.dilate(closed, kernel, iterations=1)
# cv2.imwrite('5_dilate_img.png', closed)
(_, centers, hierarchy) = cv2.findContours(closed, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return centers
示例10: getBlobContours
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def getBlobContours(ROI_image,
thresh,
strel_size=(5, 5),
is_light_background=True,
analysis_type="WORM",
thresh_block_size=15):
ROI_image = _remove_corner_blobs(ROI_image)
ROI_mask, thresh = _get_blob_mask(ROI_image, thresh, thresh_block_size, is_light_background, analysis_type)
# clean it using morphological closing - make this optional by setting strel_size to 0
if np.all(strel_size):
strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, strel_size)
ROI_mask = cv2.morphologyEx(ROI_mask, cv2.MORPH_CLOSE, strel)
# get worms, assuming each contour in the ROI is a worm
ROI_worms, hierarchy = cv2.findContours(ROI_mask,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)[-2:]
return ROI_worms, hierarchy
示例11: getBlobsSimple
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def getBlobsSimple(in_data, blob_params):
frame_number, image = in_data
min_area, worm_bw_thresh_factor, strel_size = blob_params
img_m = cv2.medianBlur(image, 3)
valid_pix = img_m[img_m>0]
if len(valid_pix) == 0:
return []
th = _thresh_bw(valid_pix)*worm_bw_thresh_factor
_, bw = cv2.threshold(img_m, th,255,cv2.THRESH_BINARY)
if np.all(strel_size):
strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, strel_size)
bw = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, strel)
cnts, hierarchy = cv2.findContours(bw, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2:]
blobs_data = _cnt_to_props(cnts, frame_number, th, min_area)
return blobs_data
示例12: colorTarget
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def colorTarget(color_range=((0, 0, 0), (255, 255, 255))):
image = cam.newImage()
if filter == 'RGB':
frame_to_thresh = image.copy()
else:
frame_to_thresh = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # convert image to hsv colorspace RENAME THIS TO IMAGE_HSV
thresh = cv2.inRange(frame_to_thresh, color_range[0], color_range[1])
# apply a blur function
kernel = np.ones((5, 5), np.uint8)
mask = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) # Apply blur
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Apply blur 2nd iteration
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] # generates number of contiguous "1" pixels
if len(cnts) > 0: # begin processing if there are "1" pixels discovered
c = max(cnts, key=cv2.contourArea) # return the largest target area
((x, y), radius) = cv2.minEnclosingCircle(c)
return np.array([round(x, 1), round(y, 1), round(radius, 1)])
else:
return np.array([None, None, 0])
示例13: detectLevel
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def detectLevel(self, raidpic, hash, raidNo, radius):
foundlvl = None
lvl = None
log.info('[Crop: ' + str(raidNo) + ' (' + str(self.uniqueHash) +') ] ' + 'Scanning Level')
height, width, channel = raidpic.shape
raidlevel = raidpic[int(round(radius*2*0.03)+(2*radius)+(radius*2*0.43)):int(round(radius*2*0.03)+(2*radius)+(radius*2*0.68)), 0:width]
raidlevel = cv2.resize(raidlevel, (0,0), fx=0.5, fy=0.5)
imgray = cv2.cvtColor(raidlevel, cv2.COLOR_BGR2GRAY)
imgray = cv2.GaussianBlur(imgray, (9, 9), 2)
#kernel = np.ones((5,5),np.uint8)
#imgray = cv2.morphologyEx(imgray, cv2.MORPH_CLOSE, kernel)
ret, thresh = cv2.threshold(imgray, 220, 255,0)
(_, contours, _) = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
lvl = len(contours)-1
if lvl >=1 and lvl <=5:
log.info('[Crop: ' + str(raidNo) + ' (' + str(self.uniqueHash) +') ] ' + 'detectLevel: found level %s' % str(lvl))
return lvl
log.info('[Crop: ' + str(raidNo) + ' (' + str(self.uniqueHash) +') ] ' + 'detectLevel: could not find level')
return None
示例14: compute_missing_cells_mask
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def compute_missing_cells_mask(self, close_ksize=5):
"""
Compute a binary img-scale mask,
"""
# Create white binary img
icellmask = np.full((self.imgshape[0], self.imgshape[1]), 255, np.uint8)
# Mask everything except table, as defined by corner nodes (not the larger super-node!)
cv2.fillConvexPoly(icellmask, self.table_corners, 0)
# Now draw all cell hulls without text, but don't downsize them()
self.draw_all_cell_hulls(icellmask, None, xscale=1.1, yscale=1.1)
# Morphology ops with large kernel to remove small intercell speckles
# NOTE: CLOSE => remove black holes
icellmask = cv2.morphologyEx(icellmask, cv2.MORPH_CLOSE,
np.ones((close_ksize, close_ksize), np.uint8))
return icellmask
示例15: motionDetected
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import MORPH_CLOSE [as 別名]
def motionDetected(self, new_frame):
frame = self.preprocessInputFrame(new_frame)
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
gray = cv.GaussianBlur(gray, (21, 21), 0)
if self.prevFrame is None:
self.prevFrame = gray
return False
frameDiff = cv.absdiff(gray, self.prevFrame)
# kernel = np.ones((5, 5), np.uint8)
opening = cv.morphologyEx(frameDiff, cv.MORPH_OPEN, None) # noqa
closing = cv.morphologyEx(frameDiff, cv.MORPH_CLOSE, None) # noqa
ret1, th1 = cv.threshold(frameDiff, 10, 255, cv.THRESH_BINARY)
height = np.size(th1, 0)
width = np.size(th1, 1)
nb = cv.countNonZero(th1)
avg = (nb * 100) / (height * width) # Calculate the average of black pixel in the image
self.prevFrame = gray
# cv.DrawContours(currentframe, self.currentcontours, (0, 0, 255), (0, 255, 0), 1, 2, cv.CV_FILLED)
# cv.imshow("frame", current_frame)
ret = avg > self.threshold # If over the ceiling trigger the alarm
if ret:
self.updateMotionDetectionDts()
return ret