本文整理匯總了Python中cv2.INTER_AREA屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.INTER_AREA屬性的具體用法?Python cv2.INTER_AREA怎麽用?Python cv2.INTER_AREA使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類cv2
的用法示例。
在下文中一共展示了cv2.INTER_AREA屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: prepare
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def prepare(input):
# preprocessing the image input
clean = cv2.fastNlMeansDenoising(input)
ret, tresh = cv2.threshold(clean, 127, 1, cv2.THRESH_BINARY_INV)
img = crop(tresh)
# 40x10 image as a flatten array
flatten_img = cv2.resize(img, (40, 10), interpolation=cv2.INTER_AREA).flatten()
# resize to 400x100
resized = cv2.resize(img, (400, 100), interpolation=cv2.INTER_AREA)
columns = np.sum(resized, axis=0) # sum of all columns
lines = np.sum(resized, axis=1) # sum of all lines
h, w = img.shape
aspect = w / h
return [*flatten_img, *columns, *lines, aspect]
示例2: read_images
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def read_images(src, tag=None, set=None):
files = os.listdir(src)
images = []
if set is not None:
set = read_set(set)
for f in files:
if tag and f.find(tag) == -1:
continue
if set is not None:
if int(f.split('.')[0]) not in set:
continue
image = (cv2.imread(os.path.join(src, f))[:, :, ::-1] / 255.0).astype(np.float32)
longer_edge = min(image.shape[0], image.shape[1])
for i in range(4):
sx = random.randrange(0, image.shape[0] - longer_edge + 1)
sy = random.randrange(0, image.shape[1] - longer_edge + 1)
new_image = image[sx:sx + longer_edge, sy:sy + longer_edge]
patch = cv2.resize(new_image, dsize=(80, 80), interpolation=cv2.INTER_AREA)
for j in range(4):
target_size = 64
ssx = random.randrange(0, patch.shape[0] - target_size)
ssy = random.randrange(0, patch.shape[1] - target_size)
images.append(patch[ssx:ssx + target_size, ssy:ssy + target_size])
return images
示例3: imresample
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def imresample(img, sz):
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable
return im_data
# This method is kept for debugging purpose
# h=img.shape[0]
# w=img.shape[1]
# hs, ws = sz
# dx = float(w) / ws
# dy = float(h) / hs
# im_data = np.zeros((hs,ws,3))
# for a1 in range(0,hs):
# for a2 in range(0,ws):
# for a3 in range(0,3):
# im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
# return im_data
示例4: seek
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def seek(self, frame_id=None):
"""Update the current frame to the given frame_id, otherwise advances by 1 frame"""
if frame_id is None:
frame_id = self.frame_id + 1
if frame_id < 0:
frame_id = 0
self.paused = True
if frame_id >= self.n_frames:
frame_id = self.n_frames - 1
self.paused = True
self.update_quality(self.frame_id, frame_id, self.quality)
self.frame = cv2.resize(
derp.util.decode_jpg(self.topics["camera"][frame_id].jpg),
None,
fx=self.scale,
fy=self.scale,
interpolation=cv2.INTER_AREA,
)
self.frame_id = frame_id
return True
示例5: read_image_pair
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def read_image_pair(pair_path, resize_or_crop=None, image_size=(256,256)):
image_blur = cv2.imread(pair_path[0], cv2.IMREAD_COLOR)
image_blur = image_blur / 255.0 * 2.0 - 1.0
image_real = cv2.imread(pair_path[1], cv2.IMREAD_COLOR)
image_real = image_real / 255.0 * 2.0 - 1.0
if resize_or_crop != None:
assert image_size != None
if resize_or_crop == 'resize':
image_blur = cv2.resize(image_blur, image_size, interpolation=cv2.INTER_AREA)
image_real = cv2.resize(image_real, image_size, interpolation=cv2.INTER_AREA)
elif resize_or_crop == 'crop':
image_blur = cv2.crop(image_blur, image_size)
image_real = cv2.crop(image_real, image_size)
else:
raise
if np.size(np.shape(image_blur)) == 3:
image_blur = np.expand_dims(image_blur, axis=0)
if np.size(np.shape(image_real)) == 3:
image_real = np.expand_dims(image_real, axis=0)
image_blur = np.array(image_blur, dtype=np.float32)
image_real = np.array(image_real, dtype=np.float32)
return image_blur, image_real
示例6: read_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def read_image(path, resize_or_crop=None, image_size=(256,256)):
image = cv2.imread(path, cv2.IMREAD_COLOR)
image = image/255.0 * 2.0 - 1.0
assert resize_or_crop != None
assert image_size != None
if resize_or_crop == 'resize':
image = cv2.resize(image, image_size, interpolation=cv2.INTER_AREA)
elif resize_or_crop == 'crop':
image = cv2.crop(image, image_size)
if np.size(np.shape(image)) == 3:
image = np.expand_dims(image, axis=0)
image = np.array(image, dtype=np.float32)
return image
示例7: resize
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# Grab the image size
(h, w) = image.shape[:2]
# If both the width and height are None, then return the original image
if width is None and height is None:
return image
# Check to see if the width is None
if width is None:
# Calculate the ratio of the height and construct the dimensions
r = height / float(h)
dim = (int(w * r), height)
# Otherwise, the height is None
else:
# Calculate the ratio of the width and construct the dimensions
r = width / float(w)
dim = (width, int(h * r))
# Resize the image
resized = cv2.resize(image, dim, interpolation=inter)
# Return the resized image
return resized
示例8: get_mnist_data
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def get_mnist_data(is_train, image_size, batchsize):
ds = MNISTCh('train' if is_train else 'test', shuffle=True)
if is_train:
augs = [
imgaug.RandomApplyAug(imgaug.RandomResize((0.8, 1.2), (0.8, 1.2)), 0.3),
imgaug.RandomApplyAug(imgaug.RotationAndCropValid(15), 0.5),
imgaug.RandomApplyAug(imgaug.SaltPepperNoise(white_prob=0.01, black_prob=0.01), 0.25),
imgaug.Resize((224, 224), cv2.INTER_AREA)
]
ds = AugmentImageComponent(ds, augs)
ds = PrefetchData(ds, 128*10, multiprocessing.cpu_count())
ds = BatchData(ds, batchsize)
ds = PrefetchData(ds, 256, 4)
else:
# no augmentation, only resizing
augs = [
imgaug.Resize((image_size, image_size), cv2.INTER_CUBIC),
]
ds = AugmentImageComponent(ds, augs)
ds = BatchData(ds, batchsize)
ds = PrefetchData(ds, 20, 2)
return ds
示例9: get_heatmap
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def get_heatmap(self, target_size):
heatmap = np.zeros((CocoMetadata.__coco_parts, self.height, self.width), dtype=np.float32)
for joints in self.joint_list:
for idx, point in enumerate(joints):
if point[0] < 0 or point[1] < 0:
continue
CocoMetadata.put_heatmap(heatmap, idx, point, self.sigma)
heatmap = heatmap.transpose((1, 2, 0))
# background
heatmap[:, :, -1] = np.clip(1 - np.amax(heatmap, axis=2), 0.0, 1.0)
if target_size:
heatmap = cv2.resize(heatmap, target_size, interpolation=cv2.INTER_AREA)
return heatmap.astype(np.float16)
示例10: _resize
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def _resize(img, shape):
"""Resize the specified image.
:param img: image to resize
:param shape: desired shape in the format (rows, columns)
:return: resized image
"""
if not (OPENCV_AVAILABLE or PILLOW_AVAILABLE):
raise ValueError('No image library backend found.'' Install either '
'OpenCV or Pillow to support image processing.')
if OPENCV_AVAILABLE:
return cv2.resize(img, shape, interpolation=cv2.INTER_AREA)
if PILLOW_AVAILABLE:
return np.array(PIL.Image.fromarray(img).resize(shape))
raise NotImplementedError
示例11: observation
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def observation(self, obs):
if self._key is None:
frame = obs
else:
frame = obs[self._key]
if self._grayscale:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(
frame, (self._width, self._height), interpolation=cv2.INTER_AREA
)
if self._grayscale:
frame = np.expand_dims(frame, -1)
if self._key is None:
obs = frame
else:
obs = obs.copy()
obs[self._key] = frame
return obs
示例12: custom_hashing
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def custom_hashing(image, hash_size=8):
image = cv2.resize(image, (hash_size + 1, hash_size), cv2.INTER_AREA)
pixel = []
[rows, cols] = image.shape
for i in range(0, rows):
for j in range(0, cols):
pixel.append(image.item(i, j))
pixels = list(pixel)
difference = []
for row in range(hash_size - 1):
for col in range(hash_size - 1):
pixel_left = image.item(row, col)
pixel_right = image.item(row, col + 1)
difference.append(pixel_left > pixel_right)
decimal_value = 0
hex_string = []
for index, value in enumerate(difference):
if value:
decimal_value += 2 ** (index % 8)
if (index % 8) == 7:
hex_string.append(hex(decimal_value)[2:].rjust(2, "0"))
decimal_value = 0
return "".join(hex_string)
示例13: process_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def process_image(self, img):
assert self._bot + self._top < img.shape[0], "Overcrop! bot + top crop >= image height!"
assert self._right + self._left < img.shape[1], "Overcrop! right + left crop >= image width!"
bot, right = self._bot, self._right
if self._bot <= 0:
bot = -(img.shape[0] + 10)
if self._right <= 0:
right = -(img.shape[1] + 10)
img = img[self._top:-bot, self._left:-right]
if self.flip:
img = img[::-1, ::-1]
if (self.height, self.width) != img.shape[:2]:
return cv2.resize(img, (self.width, self.height), interpolation=cv2.INTER_AREA)
return img
示例14: _modify_observation
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def _modify_observation(self, observation):
# convert color to grayscale using luma component
observation = (
observation[:, :, 0] * 0.299 + observation[:, :, 1] * 0.587 +
observation[:, :, 2] * 0.114
)
observation = cv2.resize(
observation, (84, 110), interpolation=cv2.INTER_AREA
)
observation = observation[18:102, :]
assert observation.shape == (84, 84)
# convert to values between 0 and 1
observation = np.array(observation, dtype=np.uint8)
return observation
示例15: letterbox
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import INTER_AREA [as 別名]
def letterbox(img, new_shape=416, color=(128, 128, 128), mode='auto', interp=cv2.INTER_AREA):
# Resize a rectangular image to a 32 pixel multiple rectangle
# https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
r = float(new_shape) / max(shape) # ratio = new / old
else:
r = max(new_shape) / max(shape)
ratio = r, r # width, height ratios
new_unpad = (int(round(shape[1] * r)), int(round(shape[0] * r)))
# Compute padding https://github.com/ultralytics/yolov3/issues/232
if mode is 'auto': # minimum rectangle
dw = np.mod(new_shape - new_unpad[0], 32) / 2 # width padding
dh = np.mod(new_shape - new_unpad[1], 32) / 2 # height padding
elif mode is 'square': # square
dw = (new_shape - new_unpad[0]) / 2 # width padding
dh = (new_shape - new_unpad[1]) / 2 # height padding
elif mode is 'rect': # square
dw = (new_shape[1] - new_unpad[0]) / 2 # width padding
dh = (new_shape[0] - new_unpad[1]) / 2 # height padding
elif mode is 'scaleFill':
dw, dh = 0.0, 0.0
new_unpad = (new_shape, new_shape)
ratio = new_shape / shape[1], new_shape / shape[0] # width, height ratios
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=interp) # INTER_AREA is better, INTER_LINEAR is faster
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, dw, dh