當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.IMREAD_GRAYSCALE屬性代碼示例

本文整理匯總了Python中cv2.IMREAD_GRAYSCALE屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.IMREAD_GRAYSCALE屬性的具體用法?Python cv2.IMREAD_GRAYSCALE怎麽用?Python cv2.IMREAD_GRAYSCALE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cv2的用法示例。


在下文中一共展示了cv2.IMREAD_GRAYSCALE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: image

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def image(self, captcha_str):
        """
        Generate a greyscale captcha image representing number string

        Parameters
        ----------
        captcha_str: str
            string a characters for captcha image

        Returns
        -------
        numpy.ndarray
            Generated greyscale image in np.ndarray float type with values normalized to [0, 1]
        """
        img = self.captcha.generate(captcha_str)
        img = np.fromstring(img.getvalue(), dtype='uint8')
        img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img, (self.h, self.w))
        img = img.transpose(1, 0)
        img = np.multiply(img, 1 / 255.0)
        return img 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:captcha_generator.py

示例2: get_data

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def get_data(path, activation):
    '''Get the dataset
    '''
    data = []
    image_names = []
    for filename in os.listdir(path):
        img = cv2.imread(os.path.join(path,filename), cv2.IMREAD_GRAYSCALE)
        image_names.append(filename)
        if img is not None:
            data.append(img)

    data = np.asarray(data)

    if activation == 'sigmoid':
        data = data.astype(np.float32)/(255.0)
    elif activation == 'tanh':
        data = data.astype(np.float32)/(255.0/2) - 1.0

    data = data.reshape((data.shape[0], 1, data.shape[1], data.shape[2]))

    np.random.seed(1234)
    p = np.random.permutation(data.shape[0])
    X = data[p]

    return X, image_names 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:vaegan_mxnet.py

示例3: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def __init__(self, files, channel=3, resize=None, shuffle=False):
        """
        Args:
            files (list): list of file paths.
            channel (int): 1 or 3. Will convert grayscale to RGB images if channel==3.
                Will produce (h, w, 1) array if channel==1.
            resize (tuple): int or (h, w) tuple. If given, resize the image.
        """
        assert len(files), "No image files given to ImageFromFile!"
        self.files = files
        self.channel = int(channel)
        assert self.channel in [1, 3], self.channel
        self.imread_mode = cv2.IMREAD_GRAYSCALE if self.channel == 1 else cv2.IMREAD_COLOR
        if resize is not None:
            resize = shape2d(resize)
        self.resize = resize
        self.shuffle = shuffle 
開發者ID:tensorpack,項目名稱:dataflow,代碼行數:19,代碼來源:image.py

示例4: make_df1_df2

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def make_df1_df2(self, idx):
        """
        Make the deformations
        """
        df1 = cv2.imread(os.path.join(self.db_root_dir, self.deformations1[idx]), cv2.IMREAD_GRAYSCALE)
        df2 = cv2.imread(os.path.join(self.db_root_dir, self.deformations2[idx]), cv2.IMREAD_GRAYSCALE)

        if self.inputRes is not None:
            df1 = imresize(df1, self.inputRes, interp='nearest')
            df2 = imresize(df2, self.inputRes, interp='nearest')

        df1 = np.array(df1, dtype=np.float32)
        df1 = df1/np.max([df1.max(), 1e-8])

        df2 = np.array(df2, dtype=np.float32)
        df2 = df2/np.max([df2.max(), 1e-8])

        return df1, df2 
開發者ID:omkar13,項目名稱:MaskTrack,代碼行數:20,代碼來源:davis17_online_data.py

示例5: __getitem__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def __getitem__(self, index):
        datafiles = self.files[index]
        image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR)
        label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE)
        size = image.shape
        name = datafiles["name"]
        if self.f_scale != 1:
            image = cv2.resize(image, None, fx=self.f_scale, fy=self.f_scale, interpolation=cv2.INTER_LINEAR)
            label = cv2.resize(label, None, fx=self.f_scale, fy=self.f_scale, interpolation = cv2.INTER_NEAREST)

        label[label == 11] = self.ignore_label

        image = np.asarray(image, np.float32)

        if self.rgb:
            image = image[:, :, ::-1]  ## BGR -> RGB
            image /= 255  ## using pytorch pretrained models

        image -= self.mean
        image /= self.vars

        image = image.transpose((2, 0, 1))  # HWC -> CHW

        # print('image.shape:',image.shape)
        return image.copy(), label.copy(), np.array(size), name 
開發者ID:lxtGH,項目名稱:Fast_Seg,代碼行數:27,代碼來源:camvid.py

示例6: load_flow_frames

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def load_flow_frames(image_dir, vid, start, num):
  frames = []
  for i in range(start, start+num):
    imgx = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'x.jpg'), cv2.IMREAD_GRAYSCALE)
    imgy = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'y.jpg'), cv2.IMREAD_GRAYSCALE)
    
    w,h = imgx.shape
    if w < 224 or h < 224:
        d = 224.-min(w,h)
        sc = 1+d/min(w,h)
        imgx = cv2.resize(imgx,dsize=(0,0),fx=sc,fy=sc)
        imgy = cv2.resize(imgy,dsize=(0,0),fx=sc,fy=sc)
        
    imgx = (imgx/255.)*2 - 1
    imgy = (imgy/255.)*2 - 1
    img = np.asarray([imgx, imgy]).transpose([1,2,0])
    frames.append(img)
  return np.asarray(frames, dtype=np.float32) 
開發者ID:tomrunia,項目名稱:PyTorchConv3D,代碼行數:20,代碼來源:charades.py

示例7: test_solution_close_to_original_implementation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def test_solution_close_to_original_implementation(self):
        image = cv2.imread('testdata/source.png', cv2.IMREAD_COLOR) / 255.0
        scribles = cv2.imread('testdata/scribbles.png', cv2.IMREAD_COLOR) / 255.0

        alpha = closed_form_matting.closed_form_matting_with_scribbles(image, scribles)
        foreground, background = solve_foreground_background(image, alpha)

        matlab_alpha = cv2.imread('testdata/matlab_alpha.png', cv2.IMREAD_GRAYSCALE) / 255.0
        matlab_foreground = cv2.imread('testdata/matlab_foreground.png', cv2.IMREAD_COLOR) / 255.0
        matlab_background = cv2.imread('testdata/matlab_background.png', cv2.IMREAD_COLOR) / 255.0

        sad_alpha = np.mean(np.abs(alpha - matlab_alpha))
        sad_foreground = np.mean(np.abs(foreground - matlab_foreground))
        sad_background = np.mean(np.abs(background - matlab_background))

        self.assertLess(sad_alpha, 1e-2)
        self.assertLess(sad_foreground, 1e-2)
        self.assertLess(sad_background, 1e-2) 
開發者ID:MarcoForte,項目名稱:closed-form-matting,代碼行數:20,代碼來源:test_matting.py

示例8: describeAllJpegsInPath

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def describeAllJpegsInPath(self, path, batch_size, verbose=False):
        ''' returns a list of descriptors '''
        jpeg_paths = sorted(glob.glob(os.path.join(path, '*.jpg')))
        descs = []
        for batch_offset in range(0, len(jpeg_paths), batch_size):
            images = []
            for i in range(batch_offset, batch_offset + batch_size):
                if i == len(jpeg_paths):
                    break
                if verbose:
                    print('%d/%d' % (i, len(jpeg_paths)))
                if self.is_grayscale:
                    image = cv2.imread(jpeg_paths[i], cv2.IMREAD_GRAYSCALE)
                    images.append(np.expand_dims(
                            np.expand_dims(image, axis=0), axis=-1))
                else:
                    image = cv2.imread(jpeg_paths[i])
                    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                    images.append(np.expand_dims(image, axis=0))
            batch = np.concatenate(images, 0)
            descs = descs + list(self.sess.run(
                    self.net_out, feed_dict={self.tf_batch: batch}))
        return descs 
開發者ID:uzh-rpg,項目名稱:netvlad_tf_open,代碼行數:25,代碼來源:image_descriptor.py

示例9: imread_uint

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def imread_uint(path, n_channels=3):
    #  input: path
    # output: HxWx3(RGB or GGG), or HxWx1 (G)
    if n_channels == 1:
        img = cv2.imread(path, 0)  # cv2.IMREAD_GRAYSCALE
        img = np.expand_dims(img, axis=2)  # HxWx1
    elif n_channels == 3:
        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # BGR or G
        if img.ndim == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)  # GGG
        else:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB
    return img


# --------------------------------------------
# matlab's imwrite
# -------------------------------------------- 
開發者ID:cszn,項目名稱:KAIR,代碼行數:20,代碼來源:utils_image.py

示例10: pred_val_fold

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def pred_val_fold(model_path, fold):
    predictor = Predictor(model_path)
    folds_df = pd.read_csv(TRAIN_FOLDS_PATH)
    fold_df = folds_df[folds_df.fold == fold]
    fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'val')
    make_dir(fold_prediction_dir)

    prob_dict = {'id': [], 'prob': []}
    for i, row in fold_df.iterrows():
        image = cv2.imread(row.image_path, cv2.IMREAD_GRAYSCALE)
        segm, prob = predictor(image)
        segm_save_path = join(fold_prediction_dir, row.id + '.png')
        cv2.imwrite(segm_save_path, segm)

        prob_dict['id'].append(row.id)
        prob_dict['prob'].append(prob)

    prob_df = pd.DataFrame(prob_dict)
    prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False) 
開發者ID:lRomul,項目名稱:argus-tgs-salt,代碼行數:21,代碼來源:predict_folds.py

示例11: pred_test_fold

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def pred_test_fold(model_path, fold):
    predictor = Predictor(model_path)
    prob_df = pd.read_csv(config.SAMPLE_SUBM_PATH)
    prob_df.rename(columns={'rle_mask': 'prob'}, inplace=True)

    fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'test')
    make_dir(fold_prediction_dir)

    for i, row in prob_df.iterrows():
        image_path = join(config.TEST_DIR, 'images'+IMAGES_NAME, row.id + '.png')
        image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        segm, prob = predictor(image)
        row.prob = prob
        segm_save_path = join(fold_prediction_dir, row.id + '.png')
        cv2.imwrite(segm_save_path, segm)

    prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False) 
開發者ID:lRomul,項目名稱:argus-tgs-salt,代碼行數:19,代碼來源:predict_folds.py

示例12: get_samples

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def get_samples(train_folds_path, folds):
    images_lst = []
    target_lst = []
    depth_lst = []

    train_folds_df = pd.read_csv(train_folds_path)

    for i, row in train_folds_df.iterrows():
        if row.fold not in folds:
            continue

        image = cv2.imread(row.image_path, cv2.IMREAD_GRAYSCALE)
        if image is None:
            raise FileNotFoundError(f"Image not found {row.image_path}")
        mask = cv2.imread(row.mask_path, cv2.IMREAD_GRAYSCALE)
        if mask is None:
            raise FileNotFoundError(f"Mask not found {row.mask_path}")
        images_lst.append(image)
        target_lst.append(mask)
        depth_lst.append(row.z)

    return images_lst, target_lst, depth_lst 
開發者ID:lRomul,項目名稱:argus-tgs-salt,代碼行數:24,代碼來源:dataset.py

示例13: load_test_image

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def load_test_image(image_path, img_width, img_height, img_channel):

    if img_channel == 1 :
        img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE)
    else :
        img = cv2.imread(image_path, flags=cv2.IMREAD_COLOR)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    img = cv2.resize(img, dsize=(img_width, img_height))

    if img_channel == 1 :
        img = np.expand_dims(img, axis=0)
        img = np.expand_dims(img, axis=-1)
    else :
        img = np.expand_dims(img, axis=0)

    img = img/127.5 - 1

    return img 
開發者ID:taki0112,項目名稱:Tensorflow-Cookbook,代碼行數:21,代碼來源:utils.py

示例14: main

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def main():

    input_dim = (None, None, num_of_dim)

    #DeblurNet = ShortCutNet().DeblurResidualNet(input_dim, 6)
    DeblurNet = ShortCutNet().DeblurSHCNet(input_dim, 15)
    DeblurNet.summary()

    input_blur = Input(shape=(input_dim))
    out_deblur = DeblurNet(input_blur)

    # Model
    model = Model(inputs = input_blur, outputs = out_deblur)
    model.summary()
    model.load_weights(path_weights, by_name=True)

    # test
    x = cv2.imread(path_test + name_read, cv2.IMREAD_GRAYSCALE) # Read as gray image
    x = x.reshape(x.shape[0], x.shape[1], num_of_dim) / 255.0

    pred = model.predict(np.expand_dims(x, axis=0))

    pred = pred.reshape(x.shape[0] - kernel_crop, x.shape[1] - kernel_crop, num_of_dim)
    cv2.imwrite(path_test + name_save, pred * 255.0) 
開發者ID:meijianhan,項目名稱:DeepDeblur,代碼行數:26,代碼來源:test.py

示例15: _GenerateBatch

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_GRAYSCALE [as 別名]
def _GenerateBatch(self, tmp, path_sharp, path_blur):
        '''Generates data of batch_size samples
        '''
        # Initialization
        x_blur = np.zeros([self.batch_size, self.img_rows, self.img_cols, self.num_of_dim], dtype = np.float64)
        y_sharp = np.zeros([self.batch_size, self.label_rows, self.label_cols, self.num_of_dim], dtype = np.float64)
        y_fake = np.zeros([self.batch_size], dtype = int)

        # Generate data
        for count_i, name_i in enumerate(tmp):

            # Read blurry input images
            x = cv2.imread(path_blur + name_i, cv2.IMREAD_GRAYSCALE)
            x = x.reshape(self.img_rows, self.img_cols, self.num_of_dim)
            x_blur[count_i, :] = x/255.0

            # Read sharp labels
            x = cv2.imread(path_sharp + name_i, cv2.IMREAD_GRAYSCALE)
            x = x.reshape(self.img_rows, self.img_cols, self.num_of_dim)
            x = x[self.kernel_crop:(self.img_rows - self.kernel_crop), \
                    self.kernel_crop:(self.img_cols - self.kernel_crop)]
            y_sharp[count_i, :] = x/255.0
            

        return [x_blur, y_sharp], y_fake 
開發者ID:meijianhan,項目名稱:DeepDeblur,代碼行數:27,代碼來源:DataGen.py


注:本文中的cv2.IMREAD_GRAYSCALE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。