本文整理匯總了Python中cv2.IMREAD_ANYCOLOR屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.IMREAD_ANYCOLOR屬性的具體用法?Python cv2.IMREAD_ANYCOLOR怎麽用?Python cv2.IMREAD_ANYCOLOR使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類cv2
的用法示例。
在下文中一共展示了cv2.IMREAD_ANYCOLOR屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def write_image(bridge, outdir, msg, fmt='png'):
results = {}
image_filename = os.path.join(outdir, str(msg.header.stamp.to_nsec()) + '.' + fmt)
try:
if hasattr(msg, 'format') and 'compressed' in msg.format:
buf = np.ndarray(shape=(1, len(msg.data)), dtype=np.uint8, buffer=msg.data)
cv_image = cv2.imdecode(buf, cv2.IMREAD_ANYCOLOR)
if cv_image.shape[2] != 3:
print("Invalid image %s" % image_filename)
return results
results['height'] = cv_image.shape[0]
results['width'] = cv_image.shape[1]
# Avoid re-encoding if we don't have to
if check_format(msg.data) == fmt:
buf.tofile(image_filename)
else:
cv2.imwrite(image_filename, cv_image)
else:
cv_image = bridge.imgmsg_to_cv2(msg, "bgr8")
cv2.imwrite(image_filename, cv_image)
except CvBridgeError as e:
print(e)
results['filename'] = image_filename
return results
示例2: open_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def open_image(path):
""" Opens an image using OpenCV given the file path.
:param path: the file path of the image
:return: the image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0
"""
flags = cv2.IMREAD_UNCHANGED+cv2.IMREAD_ANYDEPTH+cv2.IMREAD_ANYCOLOR
path = str(path)
if not os.path.exists(path):
raise OSError(f'No such file or directory: {path}')
elif os.path.isdir(path):
raise OSError(f'Is a directory: {path}')
else:
try:
im = cv2.imread(str(path), flags).astype(np.float32)/255
if im is None: raise OSError(f'File not recognized by opencv: {path}')
return cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
except Exception as e:
raise OSError(f'Error handling image at: {path}') from e
示例3: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def main():
lg = ListGenerator()
files_to_check = lg.generate_list(args.dir, ['jpg'])
print("Total files: {}".format(len(files_to_check)))
gray_img_list = []
num_checked = 0
for each_file in tqdm(files_to_check[54145:54146]):
img = cv2.imread(each_file, cv2.IMREAD_ANYCOLOR)
print(each_file)
# Preview gray images.
if len(img.shape) != 3:
gray_img_list.append(each_file)
cv2.imshow("gray", img)
if cv2.waitKey(100) == 27:
break
print("Total gray images: {}".format(len(gray_img_list)))
示例4: read_gated_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def read_gated_image(base_dir, gta_pass, img_id, data_type, num_bits=10, scale_images=False,
scaled_img_width=None, scaled_img_height=None,
normalize_images=False):
gated_imgs = []
normalizer = 2 ** num_bits - 1.
for gate_id in range(3):
gate_dir = os.path.join(base_dir, gta_pass, 'gated%d_10bit' % gate_id)
img = cv2.imread(os.path.join(gate_dir, img_id + '.png'), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
if data_type == 'real':
img = img[crop_size:(img.shape[0] - crop_size), crop_size:(img.shape[1] - crop_size)]
img = img.copy()
img[img > 2 ** 10 - 1] = normalizer
img = np.float32(img / normalizer)
gated_imgs.append(np.expand_dims(img, axis=2))
img = np.concatenate(gated_imgs, axis=2)
if normalize_images:
mean = np.mean(img, axis=2, keepdims=True)
std = np.std(img, axis=2, keepdims=True)
img = (img - mean) / (std + np.finfo(float).eps)
if scale_images:
img = cv2.resize(img, dsize=(scaled_img_width, scaled_img_height), interpolation=cv2.INTER_AREA)
return np.expand_dims(img, axis=0)
示例5: __getitem__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def __getitem__(self, index):
im_name = self.files[self.split][index] # 1/824_8-cp_Page_0503-7Nw0001
im_path = pjoin(self.root, 'img', im_name + '.png')
lbl_path=pjoin(self.root, 'wc', im_name + '.exr')
im = m.imread(im_path,mode='RGB')
im = np.array(im, dtype=np.uint8)
lbl = cv2.imread(lbl_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
lbl = np.array(lbl, dtype=np.float)
if 'val' in self.split:
im, lbl=tight_crop(im/255.0,lbl)
if self.augmentations: #this is for training, default false for validation\
tex_id=random.randint(0,len(self.txpths)-1)
txpth=self.txpths[tex_id]
tex=cv2.imread(os.path.join(self.root[:-7],txpth)).astype(np.uint8)
bg=cv2.resize(tex,self.img_size,interpolation=cv2.INTER_NEAREST)
im,lbl=data_aug(im,lbl,bg)
if self.is_transform:
im, lbl = self.transform(im, lbl)
return im, lbl
示例6: load_rgb
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def load_rgb(self, equalize=False):
# print("Loading:", self.image_file)
try:
img_rgb = cv2.imread(self.image_file, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION)
if equalize:
# equalize val (essentially gray scale level)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
hsv = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2HSV)
hue, sat, val = cv2.split(hsv)
aeq = clahe.apply(val)
# recombine
hsv = cv2.merge((hue,sat,aeq))
# convert back to rgb
img_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
h, w = img_rgb.shape[:2]
self.node.setInt('height', h)
self.node.setInt('width', w)
return img_rgb
except:
print(self.image_file + ":\n" + " rgb load error: " \
+ str(sys.exc_info()[1]))
return None
示例7: open_image_url
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def open_image_url(url):
""" Opens an image using OpenCV from a URL.
:param url: url path of the image
:return: the image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0
"""
flags = cv2.IMREAD_UNCHANGED+cv2.IMREAD_ANYDEPTH+cv2.IMREAD_ANYCOLOR
url = str(url)
resp = urllib.request.urlopen(url)
try:
im = np.asarray(bytearray(resp.read()))
im = cv2.imdecode(im, flags).astype(np.float32)/255
if im is None: raise OSError(f'File from url not recognized by opencv: {url}')
return im
except Exception as e:
raise OSError(f'Error handling image from url at: {url}') from e
示例8: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def main():
# Read in image list to be converted.
with open('gray.json', 'r') as fp:
img_list = json.load(fp)
logging.debug("Total files to be converted: {}".format(len(img_list)))
# Convert them into 3 channel images.
for each_file in tqdm(img_list):
img = cv2.imread(each_file, cv2.IMREAD_ANYCOLOR)
if len(img.shape) == 3:
print("Not a gray image: {}".format(each_file))
continue
cv2.imshow('preview', img)
if cv2.waitKey(30) == 27:
break
# Do convertion
img_converted = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# Write to file.
cv2.imwrite(each_file, img_converted)
# Check if convertion failed.
img = cv2.imread(each_file, cv2.IMREAD_ANYCOLOR)
assert len(img.shape) == 3, "Convertion failed: {}".format(each_file)
示例9: process_frame
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def process_frame(image_path: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
"""
fix given frame
:param image_path: path to frame which should be fixed
:return: fixed frame
"""
seq_no = image_path.split('/')[-3]
img_no = image_path.split('/')[-1].split('.')[0]
depth_path = f"{depth_root}/{seq_no}/clone/{img_no}.png"
semantic_path = f"{labels_root}/{seq_no}/clone/{img_no}.png"
# BGR -> RGB
rgb_map = cv2.imread(image_path)[:, :, (2, 1, 0)]
# convert centimeters to meters
depth_map = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) / 100.
# semantic image
semantic_map = cv2.imread(semantic_path)[:, :, (2, 1, 0)]
label_map = np.apply_along_axis(lambda r: rgb2label[tuple(r)], 2, semantic_map)
# backprojection to camera space
x3 = (xv - center_x) / focal_x * depth_map
y3 = (yv - center_y) / focal_y * depth_map
erg = np.stack((depth_map, -x3, -y3), axis=-1).reshape((-1, 3))
erg = np.hstack((erg, rgb_map.reshape(-1, 3), label_map.reshape(-1, 1)))
# delete sky points
erg = distance_cutoff(erg, g_cutoff)
if g_is_v1:
return None, erg, seq_no, img_no
else:
erg = remove_car_shadows(erg, img_no, g_bb_eps)
worldspace = transform2worldspace(erg, img_no)
return worldspace, erg, seq_no, img_no
示例10: __getitem__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def __getitem__(self, index):
im_name = self.files[self.split][index] #1/2Xec_Page_453X56X0001.png
im_path = pjoin(self.altroot, 'img', im_name + '.png')
img_foldr,fname=im_name.split('/')
recon_foldr='chess48'
wc_path = pjoin(self.altroot, 'wc' , im_name + '.exr')
bm_path = pjoin(self.altroot, 'bm' , im_name + '.mat')
alb_path = pjoin(self.root,'recon',img_foldr,recon_foldr, fname[:-4]+recon_foldr+'0001.png')
wc = cv2.imread(wc_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
bm = h5.loadmat(bm_path)['bm']
alb = m.imread(alb_path,mode='RGB')
if self.is_transform:
im, lbl = self.transform(wc,bm,alb)
return im, lbl
示例11: load_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def load_image(filename, data_type=torch.float32):
color_img = numpy.array(cv2.imread(filename, cv2.IMREAD_ANYCOLOR))
h, w, c = color_img.shape
color_data = color_img.astype(numpy.float32).transpose(2, 0, 1)
return torch.from_numpy(
color_data.reshape(1, c, h, w)
).type(data_type) / 255.0
示例12: get_flow
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def get_flow(path):
bgr = cv2.imread(path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
invalid = bgr[:, :, 0] == 0
out_flow = (bgr[:, :, 2:0:-1].astype('f4') - 2**15) / 64.
out_flow[invalid] = 0
return out_flow, bgr[:, :, 0]
示例13: convert
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def convert(f, record_name, mean_flag):
count = 0.0
writer = tf.python_io.TFRecordWriter(record_name)
if mean_flag:
mean = np.zeros(cv2.imread(f[0][0]).shape, np.float32)
for name in f:
modality1 = cv2.imread(name[0])
if mean_flag:
mean += modality1
label = cv2.imread(name[1], cv2.IMREAD_ANYCOLOR)
try:
assert len(label.shape)==2
except AssertionError, e:
raise( AssertionError( "Label should be one channel!" ) )
height = modality1.shape[0]
width = modality1.shape[1]
modality1 = modality1.tostring()
label = label.tostring()
features = {'height':_int64_feature(height),
'width':_int64_feature(width),
'modality1':_bytes_feature(modality1),
'label':_bytes_feature(label),
}
example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(example.SerializeToString())
if (count+1)%1 == 0:
print 'Processed data: {}'.format(count)
count = count+1
示例14: read_img
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def read_img(self, img_key):
img_str = np.fromstring(self.read_by_key(img_key), dtype=np.uint8)
img = np.asarray(cv2.imdecode(img_str, cv2.IMREAD_ANYCOLOR)).reshape((240, 320))
return img
示例15: convert
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_ANYCOLOR [as 別名]
def convert(f, record_name):
count = 0.0
writer = tf.python_io.TFRecordWriter(record_name)
for name in f:
modality1 = cv2.imread(name[0])
modality2 = cv2.imread(name[1])
label = cv2.imread(name[2], cv2.IMREAD_ANYCOLOR)
try:
assert len(label.shape)==2
except AssertionError, e:
raise( AssertionError( "Label should be one channel!" ) )
height = modality1.shape[0]
width = modality1.shape[1]
modality1 = modality1.tostring()
modality2 = modality2.tostring()
label = label.tostring()
features = {'height':_int64_feature(height),
'width':_int64_feature(width),
'modality1':_bytes_feature(modality1),
'label':_bytes_feature(label),
'modality2':_bytes_feature(modality2)
}
example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(example.SerializeToString())
if (count+1)%1 == 0:
print 'Processed data: {}'.format(count)
count = count+1