本文整理匯總了Python中cv2.CV_LOAD_IMAGE_GRAYSCALE屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.CV_LOAD_IMAGE_GRAYSCALE屬性的具體用法?Python cv2.CV_LOAD_IMAGE_GRAYSCALE怎麽用?Python cv2.CV_LOAD_IMAGE_GRAYSCALE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類cv2
的用法示例。
在下文中一共展示了cv2.CV_LOAD_IMAGE_GRAYSCALE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: E
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def E():
data = getDataFromTxt(TXT)
error = np.zeros((len(data), 3))
for i in range(len(data)):
imgPath, bbox, landmarkGt = data[i]
landmarkGt = landmarkGt[2:, :]
img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
assert(img is not None)
logger("process %s" % imgPath)
landmarkP = NM(img, bbox)
# real landmark
landmarkP = bbox.reprojectLandmark(landmarkP)
landmarkGt = bbox.reprojectLandmark(landmarkGt)
error[i] = evaluateError(landmarkGt, landmarkP, bbox)
return error
示例2: E
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def E():
data = getDataFromTxt(TXT)
error = np.zeros((len(data), 3))
for i in range(len(data)):
imgPath, bbox, landmarkGt = data[i]
landmarkGt = landmarkGt[:3, :]
img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
assert(img is not None)
logger("process %s" % imgPath)
landmarkP = EN(img, bbox)
# real landmark
landmarkP = bbox.reprojectLandmark(landmarkP)
landmarkGt = bbox.reprojectLandmark(landmarkGt)
error[i] = evaluateError(landmarkGt, landmarkP, bbox)
return error
示例3: detect
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def detect(self, obj, event):
# First, reset image, in case of previous detections:
active_handle = self.get_active('Media')
media = self.dbstate.db.get_media_from_handle(active_handle)
self.load_image(media)
min_face_size = (50, 50) # FIXME: get from setting
self.cv_image = cv2.LoadImage(self.full_path,
cv2.CV_LOAD_IMAGE_GRAYSCALE)
o_width, o_height = self.cv_image.width, self.cv_image.height
cv2.EqualizeHist(self.cv_image, self.cv_image)
cascade = cv2.Load(HAARCASCADE_PATH)
faces = cv2.HaarDetectObjects(self.cv_image, cascade,
cv2.CreateMemStorage(0),
1.2, 2, cv2.CV_HAAR_DO_CANNY_PRUNING,
min_face_size)
references = self.find_references()
rects = []
o_width, o_height = [float(t) for t in (self.cv_image.width,
self.cv_image.height)]
for ((x, y, width, height), neighbors) in faces:
# percentages:
rects.append((x / o_width, y / o_height,
width / o_width, height / o_height))
self.draw_rectangles(rects, references)
示例4: format_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def format_image(image):
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
faces = cascade_classifier.detectMultiScale(
image,
scaleFactor = 1.3 ,
minNeighbors = 5
)
if not len(faces) > 0:
return None
max_area_face = faces[0]
for face in faces:
if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
max_area_face = face
face = max_area_face
image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]
try:
image = cv2.resize(image, (48,48), interpolation = cv2.INTER_CUBIC) / 255.
except Exception:
print("[+] Problem during resize")
return None
return image
示例5: load_heatmaps
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def load_heatmaps(self, load_dir):
heatmaps = []
for step_i in range(self.step_total-self.step_total_offset):
try:
temp = cv2.imread(
'{}/{}.jpg'.format(
load_dir,
step_i,
),
cv2.CV_LOAD_IMAGE_GRAYSCALE,
)
temp = cv2.resize(temp,(self.heatmap_width, self.heatmap_height))
temp = temp / 255.0
heatmaps += [temp]
except Exception,e:
raise Exception(Exception,":",e)
示例6: read_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def read_image(img_path, **kwargs):
mode = kwargs.get('mode', 'rgb')
layout = kwargs.get('layout', 'HWC')
if mode=='gray':
img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
else:
img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR)
if mode=='rgb':
#print('to rgb')
img = img[...,::-1]
if layout=='CHW':
img = np.transpose(img, (2,0,1))
return img
示例7: generate
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def generate(ftxt, mode, argument=False):
"""
Generate Training Data for LEVEL-3
mode = train or test
"""
data = getDataFromTxt(ftxt)
trainData = defaultdict(lambda: dict(patches=[], landmarks=[]))
for (imgPath, bbox, landmarkGt) in data:
img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
assert(img is not None)
logger("process %s" % imgPath)
landmarkPs = randomShiftWithArgument(landmarkGt, 0.01)
if not argument:
landmarkPs = [landmarkPs[0]]
for landmarkP in landmarkPs:
for idx, name, padding in types:
patch, patch_bbox = getPatch(img, bbox, landmarkP[idx], padding)
patch = cv2.resize(patch, (15, 15))
patch = patch.reshape((1, 15, 15))
trainData[name]['patches'].append(patch)
_ = patch_bbox.project(bbox.reproject(landmarkGt[idx]))
trainData[name]['landmarks'].append(_)
for idx, name, padding in types:
logger('writing training data of %s'%name)
patches = np.asarray(trainData[name]['patches'])
landmarks = np.asarray(trainData[name]['landmarks'])
patches = processImage(patches)
shuffle_in_unison_scary(patches, landmarks)
with h5py.File('train/3_%s/%s.h5'%(name, mode), 'w') as h5:
h5['data'] = patches.astype(np.float32)
h5['landmark'] = landmarks.astype(np.float32)
with open('train/3_%s/%s.txt'%(name, mode), 'w') as fd:
fd.write('train/3_%s/%s.h5'%(name, mode))
示例8: generate
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def generate(ftxt, mode, argument=False):
"""
Generate Training Data for LEVEL-2
mode = train or test
"""
data = getDataFromTxt(ftxt)
trainData = defaultdict(lambda: dict(patches=[], landmarks=[]))
for (imgPath, bbox, landmarkGt) in data:
img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
assert(img is not None)
logger("process %s" % imgPath)
landmarkPs = randomShiftWithArgument(landmarkGt, 0.05)
if not argument:
landmarkPs = [landmarkPs[0]]
for landmarkP in landmarkPs:
for idx, name, padding in types:
patch, patch_bbox = getPatch(img, bbox, landmarkP[idx], padding)
patch = cv2.resize(patch, (15, 15))
patch = patch.reshape((1, 15, 15))
trainData[name]['patches'].append(patch)
_ = patch_bbox.project(bbox.reproject(landmarkGt[idx]))
trainData[name]['landmarks'].append(_)
for idx, name, padding in types:
logger('writing training data of %s'%name)
patches = np.asarray(trainData[name]['patches'])
landmarks = np.asarray(trainData[name]['landmarks'])
patches = processImage(patches)
shuffle_in_unison_scary(patches, landmarks)
with h5py.File('train/2_%s/%s.h5'%(name, mode), 'w') as h5:
h5['data'] = patches.astype(np.float32)
h5['landmark'] = landmarks.astype(np.float32)
with open('train/2_%s/%s.txt'%(name, mode), 'w') as fd:
fd.write('train/2_%s/%s.h5'%(name, mode))
示例9: E
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def E(level=1):
if level == 0:
from common import level1 as P
P = partial(P, FOnly=True) # high order function, here we only test LEVEL-1 F CNN
elif level == 1:
from common import level1 as P
elif level == 2:
from common import level2 as P
else:
from common import level3 as P
data = getDataFromTxt(TXT)
error = np.zeros((len(data), 5))
for i in range(len(data)):
imgPath, bbox, landmarkGt = data[i]
img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
assert(img is not None)
logger("process %s" % imgPath)
landmarkP = P(img, bbox)
# real landmark
landmarkP = bbox.reprojectLandmark(landmarkP)
landmarkGt = bbox.reprojectLandmark(landmarkGt)
error[i] = evaluateError(landmarkGt, landmarkP, bbox)
return error
示例10: generate_bg
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def generate_bg(num_bg_images):
found = False
while not found:
fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1))
bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255.
if (bg.shape[1] >= OUTPUT_SHAPE[1] and
bg.shape[0] >= OUTPUT_SHAPE[0]):
found = True
x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1])
y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0])
bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]]
return bg
示例11: im_from_file
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def im_from_file(f):
a = numpy.asarray(bytearray(f.read()), dtype=numpy.uint8)
return cv2.imdecode(a, cv2.CV_LOAD_IMAGE_GRAYSCALE)
示例12: get_word_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def get_word_image(self, gray_scale=True):
col_type = None
if gray_scale:
col_type = cv2.CV_LOAD_IMAGE_GRAYSCALE
else:
col_type = cv2.CV_LOAD_IMAGE_COLOR
# load the image
ul = self.bounding_box['upperLeft']
wh = self.bounding_box['widthHeight']
img = cv2.imread(self.image_path, col_type)
if not np.all(self.bounding_box['widthHeight'] == -1):
img = img[ul[1]:ul[1]+wh[1], ul[0]:ul[0]+wh[0]]
return img
示例13: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def main(img_dir, output_dir, pretrained_phocnet, deploy_proto, min_image_width_height, gpu_id):
logging_format = '[%(asctime)-19s, %(name)s, %(levelname)s] %(message)s'
logging.basicConfig(level=logging.INFO,
format=logging_format)
logger = logging.getLogger('Predict PHOCs')
if gpu_id is None:
caffe.set_mode_cpu()
else:
caffe.set_mode_gpu()
caffe.set_device(gpu_id)
logger.info('Loading PHOCNet...')
phocnet = caffe.Net(deploy_proto, caffe.TEST, weights=pretrained_phocnet)
# find all images in the supplied dir
logger.info('Found %d word images to process', len(os.listdir(img_dir)))
word_img_list = [cv2.imread(os.path.join(img_dir, filename), cv2.CV_LOAD_IMAGE_GRAYSCALE)
for filename in sorted(os.listdir(img_dir)) if filename not in ['.', '..']]
# push images through the PHOCNet
logger.info('Predicting PHOCs...')
predicted_phocs = net_output_for_word_image_list(phocnet=phocnet, word_img_list=word_img_list,
min_img_width_height=min_image_width_height)
# save everything
logger.info('Saving...')
np.save(os.path.join(output_dir, 'predicted_phocs.npy'), predicted_phocs)
logger.info('Finished')
示例14: get_full_size_labels
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def get_full_size_labels(self, img_ids, timespan=None):
"""Get full sized labels."""
if timespan is None:
timespan = self.get_default_timespan()
with h5py.File(self.h5_fname, 'r') as h5f:
num_ex = len(img_ids)
y_full = []
for kk, ii in enumerate(img_ids):
key = self.get_str_id(ii)
data_group = h5f[key]
if 'label_segmentation_full_size' in data_group:
y_gt_group = data_group['label_segmentation_full_size']
num_obj = len(y_gt_group.keys())
y_full_kk = None
for jj in xrange(min(num_obj, timespan)):
y_full_jj_str = y_gt_group['{:02d}'.format(jj)][:]
y_full_jj = cv2.imdecode(
y_full_jj_str, cv2.CV_LOAD_IMAGE_GRAYSCALE).astype('float32')
if y_full_kk is None:
y_full_kk = np.zeros(
[timespan, y_full_jj.shape[0], y_full_jj.shape[1]])
y_full_kk[jj] = y_full_jj
y_full.append(y_full_kk)
else:
y_full.append(np.zeros([timespan] + list(data_group['orig_size'][:])))
return y_full
示例15: read_pgm
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CV_LOAD_IMAGE_GRAYSCALE [as 別名]
def read_pgm(filename):
img1 = cv2.imread(filename, cv2.CV_LOAD_IMAGE_GRAYSCALE)
h, w = img1.shape[:2]
vis0 = np.zeros((h,w), np.float32)
vis0[:h, :w] = img1
return vis0
#This method is used to read cover and stego images.
#We consider that stego images can be steganographied with differents keys (in practice this seems to be inefficient...)