當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.COLOR_RGB2GRAY屬性代碼示例

本文整理匯總了Python中cv2.COLOR_RGB2GRAY屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.COLOR_RGB2GRAY屬性的具體用法?Python cv2.COLOR_RGB2GRAY怎麽用?Python cv2.COLOR_RGB2GRAY使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cv2的用法示例。


在下文中一共展示了cv2.COLOR_RGB2GRAY屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: adjust_contrast

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.

    Args:
        img (CV Image): CV Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        CV Image: Contrast adjusted image.
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be CV Image. Got {}'.format(type(img)))

    im = img.astype(np.float32)
    mean = round(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY).mean())
    im = (1 - contrast_factor) * mean + contrast_factor * im
    im = im.clip(min=0, max=255)
    return im.astype(img.dtype) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:22,代碼來源:functional.py

示例2: adjust_saturation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def adjust_saturation(img, saturation_factor):
    """Adjust color saturation of an image.

    Args:
        img (CV Image): CV Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        CV Image: Saturation adjusted image.
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be CV Image. Got {}'.format(type(img)))

    im = img.astype(np.float32)
    degenerate = cv2.cvtColor(
        cv2.cvtColor(
            im,
            cv2.COLOR_RGB2GRAY),
        cv2.COLOR_GRAY2RGB)
    im = (1 - saturation_factor) * degenerate + saturation_factor * im
    im = im.clip(min=0, max=255)
    return im.astype(img.dtype) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:26,代碼來源:functional.py

示例3: _augment

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def _augment(self, img, r):
        old_dtype = img.dtype

        if img.ndim == 3:
            if self.rgb is not None:
                m = cv2.COLOR_RGB2GRAY if self.rgb else cv2.COLOR_BGR2GRAY
                grey = cv2.cvtColor(img.astype('float32'), m)
                mean = np.mean(grey)
            else:
                mean = np.mean(img, axis=(0, 1), keepdims=True)
        else:
            mean = np.mean(img)

        img = img * r + mean * (1 - r)
        if self.clip or old_dtype == np.uint8:
            img = np.clip(img, 0, 255)
        return img.astype(old_dtype) 
開發者ID:tensorpack,項目名稱:dataflow,代碼行數:19,代碼來源:imgproc.py

示例4: to_grayscale

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.
    Args:
        img (numpy ndarray): Image to be converted to grayscale.
    Returns:
        numpy ndarray: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel
            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be numpy ndarray. Got {}'.format(type(img)))

    if num_output_channels==1:
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis]
    elif num_output_channels==3:
        # much faster than doing cvtColor to go back to gray
        img = np.broadcast_to(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis], img.shape) 
    return img 
開發者ID:jbohnslav,項目名稱:opencv_transforms,代碼行數:20,代碼來源:functional.py

示例5: __call__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def __call__(self, image, labels=None):
        if self.current == 'RGB' and self.to == 'HSV':
            image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
        elif self.current == 'RGB' and self.to == 'GRAY':
            image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
            if self.keep_3ch:
                image = np.stack([image] * 3, axis=-1)
        elif self.current == 'HSV' and self.to == 'RGB':
            image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB)
        elif self.current == 'HSV' and self.to == 'GRAY':
            image = cv2.cvtColor(image, cv2.COLOR_HSV2GRAY)
            if self.keep_3ch:
                image = np.stack([image] * 3, axis=-1)
        if labels is None:
            return image
        else:
            return image, labels 
開發者ID:pierluigiferrari,項目名稱:data_generator_object_detection_2d,代碼行數:19,代碼來源:object_detection_2d_photometric_ops.py

示例6: to_grayscale

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.
    Args:
        img (numpy ndarray): Image to be converted to grayscale.
    Returns:
        numpy ndarray: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel
            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be numpy ndarray. Got {}'.format(type(img)))

    if num_output_channels==1:
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis]
    elif num_output_channels==3:
        # much faster than doing cvtColor to go back to gray
        img = np.broadcast_to(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis], img.shape)
    return img 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:20,代碼來源:opencv_functional.py

示例7: keepratio_resize

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def keepratio_resize(self, img):
        cur_ratio = img.size[0] / float(img.size[1])

        mask_height = self.img_height
        mask_width = self.img_width
        img = np.array(img)
        if len(img.shape) == 3:
            img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        if cur_ratio > self.target_ratio:
            cur_target_height = self.img_height
            cur_target_width = self.img_width
        else:
            cur_target_height = self.img_height
            cur_target_width = int(self.img_height * cur_ratio)
        img = cv2.resize(img, (cur_target_width, cur_target_height))
        start_x = int((mask_height - img.shape[0])/2)
        start_y = int((mask_width - img.shape[1])/2)
        mask = np.zeros([mask_height, mask_width]).astype(np.uint8)
        mask[start_x : start_x + img.shape[0], start_y : start_y + img.shape[1]] = img
        img = mask        
        return img 
開發者ID:Wang-Tianwei,項目名稱:Decoupled-attention-network,代碼行數:23,代碼來源:dataset_scene.py

示例8: observation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def observation(self, obs):
        if self._key is None:
            frame = obs
        else:
            frame = obs[self._key]

        if self._grayscale:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
        frame = cv2.resize(
            frame, (self._width, self._height), interpolation=cv2.INTER_AREA
        )
        if self._grayscale:
            frame = np.expand_dims(frame, -1)

        if self._key is None:
            obs = frame
        else:
            obs = obs.copy()
            obs[self._key] = frame
        return obs 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:22,代碼來源:atari_wrapper.py

示例9: computeFeatures

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def computeFeatures(self, video):
    """
    todo: improve documentation
    Computes SIFT features for a single video.
    :param video: a video of shape (n_frames, width, height, channel)
    :return: the features, shape ()
    """
    descriptor_array = []
    for i in range(video.shape[0]):
      frame = cv2.cvtColor(video[i], cv2.COLOR_RGB2GRAY).astype('uint8')
      _, descriptors = cv2.xfeatures2d.SIFT_create(nfeatures=self.n_descriptors).detectAndCompute(frame, None)

      if descriptors is not None:
        if descriptors.shape[0] < self.n_descriptors:
          descriptors = np.concatenate([descriptors, np.zeros((self.n_descriptors - descriptors.shape[0], 128))], axis=0)
        else:
          descriptors = descriptors[:self.n_descriptors]
      else:
          descriptors = np.zeros((self.n_descriptors, 128))

      assert descriptors.shape == (self.n_descriptors, 128)
      descriptor_array.append(descriptors)
    features = np.concatenate(descriptor_array, axis=0)
    return features 
開發者ID:jonasrothfuss,項目名稱:videofeatures,代碼行數:26,代碼來源:CVFeatures.py

示例10: sobelOperT

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def sobelOperT(self, img, blursize, morphW, morphH):
        '''
            No different with sobelOper ? 
        '''
        blur = cv2.GaussianBlur(img, (blursize, blursize), 0, 0, cv2.BORDER_DEFAULT)

        if len(blur.shape) == 3:
            gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
        else:
            gray = blur

        x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, 3)
        absX = cv2.convertScaleAbs(x)
        grad = cv2.addWeighted(absX, 1, 0, 0, 0)

        _, threshold = cv2.threshold(grad, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)

        element = cv2.getStructuringElement(cv2.MORPH_RECT, (morphW, morphH))
        threshold = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, element)

        return threshold 
開發者ID:SunskyF,項目名稱:EasyPR-python,代碼行數:23,代碼來源:plate_locate.py

示例11: __apply_canny

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def __apply_canny(self, src, ksize=7, sigma=1.2, low_th=10, high_th=70):
        """Apply canny edge detection.

        Args:
            src (int): Input image BGR.
                       numpy.ndarray, (720, 1280, 3), 0~255

        Returns:
            dst (int): Output image.
                       numpy.ndarray, (720, 1280), 0~1

        """
        gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)
        blur_gray = cv2.GaussianBlur(gray,(ksize, ksize), sigma)
        dst = cv2.Canny(blur_gray, low_th, high_th) // 255

        return dst 
開發者ID:YanbaruRobotics,項目名稱:PythonPilot,代碼行數:19,代碼來源:rule_based.py

示例12: observation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def observation(self, frame):
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
        frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
        return frame[:, :, None] 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:6,代碼來源:atari_wrappers.py

示例13: to_grayscale

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (CV Image): CV to be converted to grayscale.

    Returns:
        CV Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be CV Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    elif num_output_channels == 3:
        img = cv2.cvtColor(
            cv2.cvtColor(
                img,
                cv2.COLOR_RGB2GRAY),
            cv2.COLOR_GRAY2RGB)
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:29,代碼來源:functional.py

示例14: _observation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def _observation(self, frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
    frame = cv2.resize(frame, (self.width, self.height),
                       interpolation=cv2.INTER_AREA)
    return frame[:, :, None].transpose(2, 0, 1) 
開發者ID:mjacar,項目名稱:pytorch-trpo,代碼行數:7,代碼來源:atari_wrapper.py

示例15: image_search

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_RGB2GRAY [as 別名]
def image_search(x_start :int, y_start :int, x_end :int, y_end :int,
                     img :str, threshold :int, bmp :image =None) -> Optional[Tuple[int, int]]:
        """Search the screen for the supplied picture.
        
        Returns a tuple with x,y-coordinates, or None if result is below
        the threshold.
        
        Keyword arguments:
        image     -- Filename or path to file that you search for.
        threshold -- The level of fuzziness to use - a perfect match will be
                     close to 1, but probably never 1. In my testing use a
                     value between 0.7-0.95 depending on how strict you wish
                     to be.
        bmp       -- a bitmap from the get_bitmap() function, use this if you're
                     performing multiple different OCR-readings in succession
                     from the same page. This is to avoid to needlessly get the
                     same bitmap multiple times. If a bitmap is not passed, the
                     function will get the bitmap itself. (default None)
        """
        if not bmp: bmp = Inputs.get_bitmap()
        # Bitmaps are created with a 8px border
        search_area = bmp.crop((x_start + 8, y_start + 8,
                                x_end + 8, y_end + 8))
        search_area = numpy.asarray(search_area)
        search_area = cv2.cvtColor(search_area, cv2.COLOR_RGB2GRAY)
        template = cv2.imread(img, 0)
        res = cv2.matchTemplate(search_area, template, cv2.TM_CCOEFF_NORMED)
        _, max_val, _, max_loc = cv2.minMaxLoc(res)
        if max_val < threshold:
            return None
        
        return max_loc 
開發者ID:kujan,項目名稱:NGU-scripts,代碼行數:34,代碼來源:inputs.py


注:本文中的cv2.COLOR_RGB2GRAY屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。