本文整理匯總了Python中cv2.COLOR_BGR2YUV屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.COLOR_BGR2YUV屬性的具體用法?Python cv2.COLOR_BGR2YUV怎麽用?Python cv2.COLOR_BGR2YUV使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類cv2
的用法示例。
在下文中一共展示了cv2.COLOR_BGR2YUV屬性的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: convert_to_original_colors
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def convert_to_original_colors(content_img, stylized_img):
content_img = postprocess(content_img)
stylized_img = postprocess(stylized_img)
if args.color_convert_type == 'yuv':
cvt_type = cv2.COLOR_BGR2YUV
inv_cvt_type = cv2.COLOR_YUV2BGR
elif args.color_convert_type == 'ycrcb':
cvt_type = cv2.COLOR_BGR2YCR_CB
inv_cvt_type = cv2.COLOR_YCR_CB2BGR
elif args.color_convert_type == 'luv':
cvt_type = cv2.COLOR_BGR2LUV
inv_cvt_type = cv2.COLOR_LUV2BGR
elif args.color_convert_type == 'lab':
cvt_type = cv2.COLOR_BGR2LAB
inv_cvt_type = cv2.COLOR_LAB2BGR
content_cvt = cv2.cvtColor(content_img, cvt_type)
stylized_cvt = cv2.cvtColor(stylized_img, cvt_type)
c1, _, _ = cv2.split(stylized_cvt)
_, c2, c3 = cv2.split(content_cvt)
merged = cv2.merge((c1, c2, c3))
dst = cv2.cvtColor(merged, inv_cvt_type).astype(np.float32)
dst = preprocess(dst)
return dst
示例2: pre_process_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def pre_process_image(image):
#image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
#print(image)
image[:,:,0] = cv2.equalizeHist(image[:,:,0])
image[:,:,1] = cv2.equalizeHist(image[:,:,1])
image[:,:,2] = cv2.equalizeHist(image[:,:,2])
image = image/255. - 0.5
return image
示例3: pre_process_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def pre_process_image(image):
#image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
#print(image)
#image[:,:,0] = cv2.equalizeHist(image[:,:,0])
#image[:,:,1] = cv2.equalizeHist(image[:,:,1])
#image[:,:,2] = cv2.equalizeHist(image[:,:,2])
image = image/255.-0.5
return image
示例4: transform_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def transform_image(image,ang_range,shear_range,trans_range):
# Rotation
ang_rot = np.random.uniform(ang_range)-ang_range/2
rows,cols,ch = image.shape
Rot_M = cv2.getRotationMatrix2D((cols/2,rows/2),ang_rot,1)
# Translation
tr_x = trans_range*np.random.uniform()-trans_range/2
tr_y = trans_range*np.random.uniform()-trans_range/2
Trans_M = np.float32([[1,0,tr_x],[0,1,tr_y]])
# Shear
pts1 = np.float32([[5,5],[20,5],[5,20]])
pt1 = 5+shear_range*np.random.uniform()-shear_range/2
pt2 = 20+shear_range*np.random.uniform()-shear_range/2
pts2 = np.float32([[pt1,5],[pt2,pt1],[5,pt2]])
shear_M = cv2.getAffineTransform(pts1,pts2)
image = cv2.warpAffine(image,Rot_M,(cols,rows))
image = cv2.warpAffine(image,Trans_M,(cols,rows))
image = cv2.warpAffine(image,shear_M,(cols,rows))
image = pre_process_image(image.astype(np.uint8))
#image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
#image = image[:,:,0]
#image = cv2.resize(image, (img_resize,img_resize),interpolation = cv2.INTER_CUBIC)
return image
示例5: read_an_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def read_an_image(filename):
img = cv2.imread(filename)
img = cv2.resize(img[-150:], (200, 66))
# BGR space to YUV space
img = cv2.cvtColor(img,cv2.COLOR_BGR2YUV)
return img
示例6: __call__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def __call__(self, im):
img_yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV)
clahe = cv2.createCLAHE(clipLimit=self.clipLimit, tileGridSize=self.tileGridSize)
img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0])
img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
return img_output
示例7: histogram_equalization2
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def histogram_equalization2(img: np.ndarray):
if len(np.shape(img)) == 3:
img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
# equalize the histogram of the Y channel
img_yuv[:, :, 0] = cv2.equalizeHist(img_yuv[:, :, 0])
# convert the YUV image back to RGB format
img = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
return img
示例8: equalize_clahe_color_yuv
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def equalize_clahe_color_yuv(img):
"""Equalize the image splitting it after conversion to YUV and applying CLAHE
to the Y channel and merging the channels and convert back to BGR
"""
cla = cv2.createCLAHE(clipLimit=4.0)
Y, U, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2YUV))
eq_Y = cla.apply(Y)
eq_image = cv2.cvtColor(cv2.merge([eq_Y, U, V]), cv2.COLOR_YUV2BGR)
return eq_image
開發者ID:PacktPublishing,項目名稱:Mastering-OpenCV-4-with-Python,代碼行數:12,代碼來源:clahe_histogram_equalization.py
示例9: frame_pre_processing
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def frame_pre_processing(img):
img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
img_yuv[:, :, 0] = cv2.equalizeHist(img_yuv[:, :, 0])
img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2RGB)
return img_output
示例10: computeForwardPasses
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def computeForwardPasses(nets, alexnet, im, transformer, transformer_alex, resize_net):
"""
Compute the forward passes for CALC and optionallly alexnet
"""
img_yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV)
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
im = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
alex_conv3 = None
t_alex = -1
imcp = np.copy(im) # for AlexNet
if im.shape[2] > 1:
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
if not resize_net:
im = cv2.resize(im, (160, 120), interpolation = cv2.INTER_CUBIC)
else:
transformer = caffe.io.Transformer({'X1':(1,1,im.shape[0],im.shape[1])})
transformer.set_raw_scale('X1',1./255)
for net in nets:
x1 = net.blobs['X1']
x1.reshape(1,1,im.shape[0],im.shape[1])
net.reshape()
descr = []
t_calc = []
for net in nets:
t0 = time()
net.blobs['X1'].data[...] = transformer.preprocess('X1', im)
net.forward()
d = np.copy(net.blobs['descriptor'].data[...])
t_calc.append(time() - t0)
d /= np.linalg.norm(d)
descr.append(d)
if alexnet is not None:
im2 = cv2.resize(imcp, (227,227), interpolation=cv2.INTER_CUBIC)
t0 = time()
alexnet.blobs['data'].data[...] = transformer_alex.preprocess('data', im2)
alexnet.forward()
alex_conv3 = np.copy(alexnet.blobs['conv3'].data[...])
alex_conv3 = np.reshape(alex_conv3, (alex_conv3.size, 1))
global first_it
global A
if first_it:
np.random.seed(0)
A = np.random.randn(descr[0].size, alex_conv3.size) # For Gaussian random projection
first_it = False
alex_conv3 = np.matmul(A, alex_conv3)
alex_conv3 = np.reshape(alex_conv3, (1, alex_conv3.size))
t_alex = time() - t0
alex_conv3 /= np.linalg.norm(alex_conv3)
return descr, alex_conv3, t_calc, t_alex
示例11: read_ori_img
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import COLOR_BGR2YUV [as 別名]
def read_ori_img(self,filename):
#傻逼opencv因為數組類型不會變,輸入是uint8輸出也是uint8,而UV可以是負數且uint8會去掉小數部分
ori_img = cv2.imread(filename).astype(np.float32)
self.ori_img_shape = ori_img.shape[:2]
if self.color_mod == 'RGB':
self.ori_img_YUV = ori_img
elif self.color_mod == 'YUV':
self.ori_img_YUV = cv2.cvtColor(ori_img, cv2.COLOR_BGR2YUV)
if not self.ori_img_YUV.shape[0]%(2**self.dwt_deep)==0:
temp = (2**self.dwt_deep)-self.ori_img_YUV.shape[0]%(2**self.dwt_deep)
self.ori_img_YUV = np.concatenate((self.ori_img_YUV,np.zeros((temp,self.ori_img_YUV.shape[1],3))),axis=0)
if not self.ori_img_YUV.shape[1]%(2**self.dwt_deep)==0:
temp = (2**self.dwt_deep)-self.ori_img_YUV.shape[1]%(2**self.dwt_deep)
self.ori_img_YUV = np.concatenate((self.ori_img_YUV,np.zeros((self.ori_img_YUV.shape[0],temp,3))),axis=1)
assert self.ori_img_YUV.shape[0]%(2**self.dwt_deep)==0
assert self.ori_img_YUV.shape[1]%(2**self.dwt_deep)==0
if self.dwt_deep==1:
coeffs_Y = dwt2(self.ori_img_YUV[:,:,0],'haar')
ha_Y = coeffs_Y[0]
coeffs_U = dwt2(self.ori_img_YUV[:,:,1],'haar')
ha_U = coeffs_U[0]
coeffs_V = dwt2(self.ori_img_YUV[:,:,2],'haar')
ha_V = coeffs_V[0]
self.coeffs_Y = [coeffs_Y[1]]
self.coeffs_U = [coeffs_U[1]]
self.coeffs_V = [coeffs_V[1]]
elif self.dwt_deep>=2:
#不希望使用太多級的dwt,2,3次就行了
coeffs_Y = dwt2(self.ori_img_YUV[:,:,0],'haar')
ha_Y = coeffs_Y[0]
coeffs_U = dwt2(self.ori_img_YUV[:,:,1],'haar')
ha_U = coeffs_U[0]
coeffs_V = dwt2(self.ori_img_YUV[:,:,2],'haar')
ha_V = coeffs_V[0]
self.coeffs_Y = [coeffs_Y[1]]
self.coeffs_U = [coeffs_U[1]]
self.coeffs_V = [coeffs_V[1]]
for i in range(self.dwt_deep-1):
coeffs_Y = dwt2(ha_Y,'haar')
ha_Y = coeffs_Y[0]
coeffs_U = dwt2(ha_U,'haar')
ha_U = coeffs_U[0]
coeffs_V = dwt2(ha_V,'haar')
ha_V = coeffs_V[0]
self.coeffs_Y.append(coeffs_Y[1])
self.coeffs_U.append(coeffs_U[1])
self.coeffs_V.append(coeffs_V[1])
self.ha_Y = ha_Y
self.ha_U = ha_U
self.ha_V = ha_V
self.ha_block_shape = (int(self.ha_Y.shape[0]/self.block_shape[0]),int(self.ha_Y.shape[1]/self.block_shape[1]),self.block_shape[0],self.block_shape[1])
strides = self.ha_Y.itemsize*(np.array([self.ha_Y.shape[1]*self.block_shape[0],self.block_shape[1],self.ha_Y.shape[1],1]))
self.ha_Y_block = np.lib.stride_tricks.as_strided(self.ha_Y.copy(),self.ha_block_shape,strides)
self.ha_U_block = np.lib.stride_tricks.as_strided(self.ha_U.copy(),self.ha_block_shape,strides)
self.ha_V_block = np.lib.stride_tricks.as_strided(self.ha_V.copy(),self.ha_block_shape,strides)