當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.CASCADE_SCALE_IMAGE屬性代碼示例

本文整理匯總了Python中cv2.CASCADE_SCALE_IMAGE屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.CASCADE_SCALE_IMAGE屬性的具體用法?Python cv2.CASCADE_SCALE_IMAGE怎麽用?Python cv2.CASCADE_SCALE_IMAGE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cv2的用法示例。


在下文中一共展示了cv2.CASCADE_SCALE_IMAGE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: detect_faces

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detect_faces(img, draw_box=True):
	# convert image to grayscale
	grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

	# detect faces
	faces = face_cascade.detectMultiScale(grayscale_img, scaleFactor=1.1,
		minNeighbors=5,
        minSize=(30, 30),
        flags=cv2.CASCADE_SCALE_IMAGE)
	
	face_box, face_coords = None, []

	for (x, y, w, h) in faces:
		if draw_box:
			cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 5)
		face_box = img[y:y+h, x:x+w]
		face_coords = [x,y,w,h]

	return img, face_box, face_coords 
開發者ID:PacktPublishing,項目名稱:Neural-Network-Projects-with-Python,代碼行數:21,代碼來源:face_detection.py

示例2: camera_stream

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def camera_stream():
     # Capture frame-by-frame
    ret, frame = video_capture.read()

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = faceCascade.detectMultiScale(
        gray,
        scaleFactor=1.1,
        minNeighbors=5,
        minSize=(30, 30),
        flags=cv2.CASCADE_SCALE_IMAGE
    )

    # Draw a rectangle around the faces
    for (x, y, w, h) in faces:
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

    # Display the resulting frame in browser
    return cv2.imencode('.jpg', frame)[1].tobytes() 
開發者ID:akmamun,項目名稱:live-stream-face-detection,代碼行數:22,代碼來源:camera.py

示例3: detectFaces

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detectFaces(frame):
    cascPath = "../data/haarcascade_frontalface_default.xml"
    faceCascade = cv2.CascadeClassifier(cascPath)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    detected_faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.1,
            minNeighbors=6,
            minSize=(50, 50),
            flags=cv2.CASCADE_SCALE_IMAGE)
    return gray, detected_faces 
開發者ID:its-izhar,項目名稱:Emotion-Recognition-Using-SVMs,代碼行數:13,代碼來源:Train Classifier and Test Video Feed.py

示例4: prediction

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def prediction(self, image):
        objects = self.model.detectMultiScale(
                image,
                scaleFactor=1.1,
                minNeighbors=5,
                minSize=(30, 30),
                flags=cv2.CASCADE_SCALE_IMAGE
                )
        return objects 
開發者ID:cristianpb,項目名稱:object-detection,代碼行數:11,代碼來源:cascade.py

示例5: detect

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detect(self, image, scale_factor=1.1, min_neighbors=5):
        # Detect faces in the image
        boxes = self.face_cascade.detectMultiScale(image, scale_factor, min_neighbors, flags=cv2.CASCADE_SCALE_IMAGE)

        # Return the bounding boxes
        return boxes 
開發者ID:hsSam,項目名稱:PracticalPythonAndOpenCV_CaseStudies,代碼行數:8,代碼來源:facedetector.py

示例6: detect

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detect(img, cascade):
    rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30),
                                     flags=cv2.CASCADE_SCALE_IMAGE)
    if len(rects) == 0:
        return []
    rects[:,2:] += rects[:,:2]
    return rects 
開發者ID:makelove,項目名稱:OpenCV-Python-Tutorial,代碼行數:9,代碼來源:facedetect.py

示例7: detectFace

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detectFace(self, img):
        rects = self.cc.detectMultiScale(img, scaleFactor=1.2, minNeighbors=2, \
                    minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE)
        for rect in rects:
            rect[2:] += rect[:2]
            yield BBox([rect[0], rect[2], rect[1], rect[3]]) 
開發者ID:luoyetx,項目名稱:deep-landmark,代碼行數:8,代碼來源:landmark.py

示例8: get_lbp_facebox

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def get_lbp_facebox(image):
    """
    Get the bounding box fo faces in image by LBP feature.
    """
    rects = CASCADES.detectMultiScale(image, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30),
                                      flags=cv.CASCADE_SCALE_IMAGE)
    if len(rects) == 0:
        return []
    for rect in rects:
        rect[2] += rect[0]
        rect[3] += rect[1]
    return rects 
開發者ID:yinguobing,項目名稱:image_utility,代碼行數:14,代碼來源:face_detector.py

示例9: detect_faces

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detect_faces(self, image: np.ndarray):
        # haarclassifiers work better in black and white
        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        gray_image = cv2.equalizeHist(gray_image)

        faces = self.classifier.detectMultiScale(gray_image,
                                                 scaleFactor=1.3,
                                                 minNeighbors=4,
                                                 flags=cv2.CASCADE_SCALE_IMAGE,
                                                 minSize=self._min_size)

        return faces 
開發者ID:stoic1979,項目名稱:robovision,代碼行數:14,代碼來源:dashboard.py

示例10: detect_face_in_image_data

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detect_face_in_image_data(self, image_data):
        """
        function detects faces in image data,
        draws rectangle for faces in image data,
        and returns this updated image data with highlighted face/s
        """
        self._red = (0, 0, 255)
        self._width = 2
        self._min_size = (30, 30)

        # haarclassifiers work better in black and white
        gray_image = cv2.cvtColor(image_data, cv2.COLOR_BGR2GRAY)
        gray_image = cv2.equalizeHist(gray_image)

        # path to Haar face classfier's xml file
        face_cascade_xml = './cascades/haarcascades_cuda/" \
                "haarcascade_frontalface_default.xml'
        self.classifier = cv2.CascadeClassifier(face_cascade_xml)
        faces = self.classifier.detectMultiScale(gray_image,
                                                 scaleFactor=1.3,
                                                 minNeighbors=4,
                                                 flags=cv2.CASCADE_SCALE_IMAGE,
                                                 minSize=self._min_size)

        for (x, y, w, h) in faces:
            cv2.rectangle(image_data,
                          (x, y),
                          (x+w, y+h),
                          self._red,
                          self._width)

        return image_data 
開發者ID:stoic1979,項目名稱:robovision,代碼行數:34,代碼來源:app.py

示例11: format_image

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def format_image(image_to_format):
    image_to_format = cv2.cvtColor(image_to_format, cv2.COLOR_BGR2GRAY)

    image_border = np.zeros((150, 150), np.uint8)
    image_border[:, :] = 200
    image_border[
        int((150 / 2) - (Constants.FACE_SIZE / 2)): int((150 / 2) + (Constants.FACE_SIZE / 2)),
        int((150 / 2) - (Constants.FACE_SIZE / 2)): int((150 / 2) + (Constants.FACE_SIZE / 2))
    ] = image_to_format

    image_to_format = image_border
    detected_faces = cascade_classifier.detectMultiScale(
        image_to_format,
        scaleFactor=1.3,
        minNeighbors=5,
        minSize=(48, 48),
        flags=cv2.CASCADE_SCALE_IMAGE
    )

    # If no faces are found, return Null
    if not detected_faces:
        return None

    max_face = detected_faces[0]
    for face in detected_faces:
        if face[2] * face[3] > max_face[2] * max_face[3]:
            max_face = face

    # Chop image to face
    face = max_face
    image_to_format = image_to_format[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]

    # Resize image to fit network specs
    try:
        image_to_format = cv2.resize(image_to_format, (Constants.FACE_SIZE, Constants.FACE_SIZE),
                                     interpolation=cv2.INTER_CUBIC) / 255.
    except Exception:
        # This happened once and now I'm scared to remove it.
        print("Image resize exception. Check input resolution inconsistency.")
        return None
    return image_to_format 
開發者ID:SamVenkatesh,項目名稱:FakeBlock,代碼行數:43,代碼來源:CSVToNumpyConverter.py

示例12: format_image

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def format_image(image_to_format):
    if len(image_to_format.shape) > 2 and image_to_format.shape[2] == 3:
        image_to_format = cv2.cvtColor(image_to_format, cv2.COLOR_BGR2GRAY)
    else:
        image_to_format = cv2.imdecode(image_to_format, cv2.CV_LOAD_IMAGE_GRAYSCALE)

    detected_faces = face_cascade.detectMultiScale(
        image_to_format,
        scaleFactor=1.3,
        minNeighbors=5,
        minSize = (48, 48),
        flags = cv2.CASCADE_SCALE_IMAGE
    )

    # If we don't find a face, return None
    if not len(detected_faces) > 0:
        return None
    max_face = detected_faces[0]
    for face in detected_faces:
        if face[2] * face[3] > max_face[2] * max_face[3]:
            max_face = face

    # Chop image to face
    face = max_face
    image_to_format = image_to_format[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]

    # Resize image to fit network specs
    try:
        image_to_format = cv2.resize(image_to_format, (Constants.FACE_SIZE, Constants.FACE_SIZE),
                                     interpolation=cv2.INTER_CUBIC) / 255.
    except Exception:
        print("Image resize exception. Check input resolution inconsistency.")
        return None
    return image_to_format 
開發者ID:SamVenkatesh,項目名稱:FakeBlock,代碼行數:36,代碼來源:WebCam.py

示例13: apply_Haar_filter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def apply_Haar_filter(img, haar_cascade, scaleFact=1.1, minNeigh=5, minSizeW=30):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    features = haar_cascade.detectMultiScale(
        gray,
        scaleFactor=scaleFact,
        minNeighbors=minNeigh,
        minSize=(minSizeW, minSizeW),
        flags=cv2.CASCADE_SCALE_IMAGE,
    )
    return features


# Adjust the given sprite to the head's width and position
# in case of the sprite not fitting the screen in the top, the sprite should be trimed 
開發者ID:charlielito,項目名稱:snapchat-filters-opencv,代碼行數:17,代碼來源:main.py

示例14: apply_Haar_filter

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def apply_Haar_filter(img, haar_cascade,scaleFact = 1.1, minNeigh = 5, minSizeW = 30):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    features = haar_cascade.detectMultiScale(
        gray,
        scaleFactor=scaleFact,
        minNeighbors=minNeigh,
        minSize=(minSizeW, minSizeW),
        flags=cv2.CASCADE_SCALE_IMAGE
    )
    return features 
開發者ID:charlielito,項目名稱:snapchat-filters-opencv,代碼行數:13,代碼來源:facial_features.py

示例15: detect_single

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CASCADE_SCALE_IMAGE [as 別名]
def detect_single(self, image):
        """Return bounds (x, y, width, height) of detected face in grayscale image.
        If no face or more than one face are detected, None is returned.
        """
        faces = self.haar_faces.detectMultiScale(image, 
                                            scaleFactor=self.haar_scale_factor, 
                                            minNeighbors=self.haar_min_neighbors_face, 
                                            minSize=self.haar_min_size_face, 
                                            flags=cv2.CASCADE_SCALE_IMAGE)
        if len(faces) != 1:
            return None
        return faces[0] 
開發者ID:normyx,項目名稱:MMM-Facial-Recognition-OCV3,代碼行數:14,代碼來源:face.py


注:本文中的cv2.CASCADE_SCALE_IMAGE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。