當前位置: 首頁>>代碼示例>>Python>>正文


Python config.RANDOM_SEED屬性代碼示例

本文整理匯總了Python中config.RANDOM_SEED屬性的典型用法代碼示例。如果您正苦於以下問題:Python config.RANDOM_SEED屬性的具體用法?Python config.RANDOM_SEED怎麽用?Python config.RANDOM_SEED使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在config的用法示例。


在下文中一共展示了config.RANDOM_SEED屬性的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transform

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def transform(self):
        # ngrams
        obs_ngrams = list(map(lambda x: ngram_utils._ngrams(x.split(" "), self.obs_ngram, "_"), self.obs_corpus))
        target_ngrams = list(map(lambda x: ngram_utils._ngrams(x.split(" "), self.target_ngram, "_"), self.target_corpus))
        # cooccurrence ngrams
        cooc_terms = list(map(lambda lst1,lst2: self._get_cooc_terms(lst1, lst2, "X"), obs_ngrams, target_ngrams))
        ## tfidf
        tfidf = self._init_word_ngram_tfidf(ngram=1)
        X = tfidf.fit_transform(cooc_terms)
        ## svd
        svd = TruncatedSVD(n_components=self.svd_dim, 
                n_iter=self.svd_n_iter, random_state=config.RANDOM_SEED)
        return svd.fit_transform(X)


# 2nd in CrowdFlower (preprocessing_mikhail.py) 
開發者ID:ChenglongChen,項目名稱:kaggle-HomeDepot,代碼行數:18,代碼來源:feature_vector_space.py

示例2: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def main():

    train_x, train_y = _load_data()
    print('loading data done!')

    folds = list(StratifiedKFold(n_splits=10, shuffle=True,
                             random_state=config.RANDOM_SEED).split(train_x, train_y))

    fold_index = []
    for i,(train_id, valid_id) in enumerate(folds):
        fold_index.append(valid_id)

    print("fold num: %d" % (len(fold_index)))

    fold_index = np.array(fold_index)
    np.save(config.DATA_PATH +  "fold_index.npy", fold_index)

    save_x_y(fold_index, train_x, train_y)
    print("save train_x_y done!")

    fold_index = np.load(config.DATA_PATH +  "fold_index.npy")
    save_i(fold_index)
    print("save index done!") 
開發者ID:shichence,項目名稱:AutoInt,代碼行數:25,代碼來源:stratifiedKfold.py

示例3: _get_model

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def _get_model(self):
        np.random.seed(config.RANDOM_SEED)
        kwargs = {
            "sequence_length": config.MAX_DOCUMENT_LENGTH,
            "mention_length": config.MENTION_SIZE,
            "num_classes": self.num_types,
            "vocab_size": self.embedding.vocab_size,
            "embedding_size": self.embedding.embedding_dim,
            "position_size": self.embedding.position_size,
            "pretrained_embedding": self.embedding.embedding,
            "wpe": np.random.random_sample((self.embedding.position_size, self.hparams.wpe_dim)),
            "type_info": self.type_info,
            "hparams": self.hparams
        }
        if "nfetc" in self.model_name:
            return NFETC(**kwargs)
        else:
            raise AttributeError("Invalid model name!") 
開發者ID:billy-inn,項目名稱:NFETC,代碼行數:20,代碼來源:task.py

示例4: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def main(options):

    # create sub folder
    subm_folder = "%s/ensemble_selection"%config.SUBM_DIR
    os_utils._create_dirs( [subm_folder] )
    subm_prefix = "%s/test.pred.[%s]" % (subm_folder, options.outfile)

    # get model list
    log_folder = "%s/level%d_models"%(config.LOG_DIR, options.level-1)
    model_list = get_model_list(log_folder, options.size)

    # get instance splitter
    if options.level not in [2, 3]:
        inst_splitter = None
    elif options.level == 2:
        inst_splitter = splitter_level2
    elif options.level == 3:
        inst_splitter = splitter_level3

    ees = ExtremeEnsembleSelection(
            model_folder=config.OUTPUT_DIR, 
            model_list=model_list, 
            subm_prefix=subm_prefix, 
            weight_opt_max_evals=options.weight_opt_max_evals, 
            w_min=-1., 
            w_max=1., 
            inst_subsample=options.inst_subsample,
            inst_subsample_replacement=options.inst_subsample_replacement,
            inst_splitter=inst_splitter,
            model_subsample=options.model_subsample,
            model_subsample_replacement=options.model_subsample_replacement,
            bagging_size=options.bagging_size, 
            init_top_k=options.init_top_k,
            epsilon=options.epsilon,
            multiprocessing=False, 
            multiprocessing_num_cores=config.NUM_CORES,
            enable_extreme=options.enable_extreme,
            random_seed=config.RANDOM_SEED
        )
    ees.go() 
開發者ID:ChenglongChen,項目名稱:kaggle-HomeDepot,代碼行數:42,代碼來源:extreme_ensemble_selection.py

示例5: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def __init__(self, dfTrain, dfTest, n_iter=5, random_state=config.RANDOM_SEED,
                    verbose=False, plot=False, split_param=[0.5, 0.25, 0.5]):
        self.dfTrain = dfTrain
        self.dfTest = dfTest
        self.n_iter = n_iter
        self.random_state = random_state
        self.verbose = verbose
        self.plot = plot
        self.split_param = split_param 
開發者ID:ChenglongChen,項目名稱:kaggle-HomeDepot,代碼行數:11,代碼來源:splitter.py

示例6: add_hidden_layer

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_hidden_layer(self, x, idx):
        dim = self.output_dim if idx == 0 else self.hidden_size
        with tf.variable_scope("hidden_%d" % idx):
            W = tf.get_variable("W", shape=[dim, self.hidden_size],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            b = tf.get_variable("b", shape=[self.hidden_size],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            self.var_list2.append(W)
            self.var_list2.append(b)
            h = tf.nn.xw_plus_b(x, W, b)
            h_norm = tf.layers.batch_normalization(h, training=self.phase)
            h_drop = tf.nn.dropout(tf.nn.relu(h_norm), self.dense_dropout, seed=config.RANDOM_SEED)
        return h_drop 
開發者ID:billy-inn,項目名稱:HRERE,代碼行數:15,代碼來源:real_hrere.py

示例7: add_hidden_layer

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_hidden_layer(self, x, idx):
        dim = self.output_dim if idx == 0 else self.hidden_size
        with tf.variable_scope("hidden_%d" % idx):
            W = tf.get_variable("W", shape=[dim, self.hidden_size],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            b = tf.get_variable("b", shape=[self.hidden_size],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            h = tf.nn.xw_plus_b(x, W, b)
            h_norm = tf.layers.batch_normalization(h, training=self.phase)
            h_drop = tf.nn.dropout(tf.nn.relu(h_norm), self.dense_dropout, seed=config.RANDOM_SEED)
        return h_drop 
開發者ID:billy-inn,項目名稱:HRERE,代碼行數:13,代碼來源:bilstm.py

示例8: _get_model

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def _get_model(self):
        np.random.seed(config.RANDOM_SEED)
        kwargs = {
            "sequence_length": config.MAX_DOCUMENT_LENGTH,
            "num_classes": config.NUM_RELATION,
            "vocab_size": self.embedding.vocab_size,
            "embedding_size": self.embedding.embedding_dim,
            "position_size": self.embedding.position_size,
            "pretrained_embedding": self.embedding.embedding,
            "wpe": np.random.random_sample((self.embedding.position_size, self.hparams.wpe_size)),
            "hparams": self.hparams,
        }
        if "base" in self.model_name:
            return BiLSTM(**kwargs)
        elif "complex_hrere" in self.model_name:
            kwargs["entity_embedding1"] = self.entity_embedding1
            kwargs["entity_embedding2"] = self.entity_embedding2
            kwargs["relation_embedding1"] = self.relation_embedding1
            kwargs["relation_embedding2"] = self.relation_embedding2
            return ComplexHRERE(**kwargs)
        elif "real_hrere" in self.model_name:
            kwargs["entity_embedding"] = self.entity_embedding
            kwargs["relation_embedding"] = self.relation_embedding
            return RealHRERE(**kwargs)
        else:
            raise AttributeError("Invalid model name!") 
開發者ID:billy-inn,項目名稱:HRERE,代碼行數:28,代碼來源:task.py

示例9: add_hidden_layer

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_hidden_layer(self, x, idx):
        dim = self.feature_dim if idx == 0 else self.hidden_size
        with tf.variable_scope("hidden_%d" % idx):
            W = tf.get_variable("W", shape=[dim, self.hidden_size],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            b = tf.get_variable("b", shape=[self.hidden_size],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            h = tf.nn.xw_plus_b(x, W, b)
            h_norm = tf.layers.batch_normalization(h, training=self.phase)
            h_drop = tf.nn.dropout(tf.nn.relu(h_norm), self.dense_dropout, seed=config.RANDOM_SEED)
        return h_drop 
開發者ID:billy-inn,項目名稱:NFETC,代碼行數:13,代碼來源:nfetc.py

示例10: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def main():
    
    dfTrain = pd.read_csv(config.TRAIN_DATA, encoding="ISO-8859-1")
    dfTest = pd.read_csv(config.TEST_DATA, encoding="ISO-8859-1")


    # splits for level1
    splitter = HomedepotSplitter(dfTrain=dfTrain, 
                                dfTest=dfTest, 
                                n_iter=config.N_RUNS, 
                                random_state=config.RANDOM_SEED, 
                                verbose=True,
                                plot=True,
                                # tune these params to get a close distribution
                                split_param=[0.5, 0.25, 0.5],
                                )
    splitter.split()
    splitter.save("%s/splits_level1.pkl"%config.SPLIT_DIR)
    splits_level1 = splitter.splits


    ## splits for level2
    splits_level1 = pkl_utils._load("%s/splits_level1.pkl"%config.SPLIT_DIR)
    splits_level2 = [0]*config.N_RUNS
    for run, (trainInd, validInd) in enumerate(splits_level1):
        dfValid = dfTrain.iloc[validInd].copy()
        splitter2 = HomedepotSplitter(dfTrain=dfValid, 
                                    dfTest=dfTest, 
                                    n_iter=1, 
                                    random_state=run, 
                                    verbose=True,
                                    # tune these params to get a close distribution
                                    split_param=[0.5, 0.15, 0.6])
        splitter2.split()
        splits_level2[run] = splitter2.splits[0]
    pkl_utils._save("%s/splits_level2.pkl"%config.SPLIT_DIR, splits_level2)


    ## splits for level3
    splits_level2 = pkl_utils._load("%s/splits_level2.pkl"%config.SPLIT_DIR)
    splits_level3 = [0]*config.N_RUNS
    for run, (trainInd, validInd) in enumerate(splits_level2):
        dfValid = dfTrain.iloc[validInd].copy()
        splitter3 = HomedepotSplitter(dfTrain=dfValid, 
                                    dfTest=dfTest, 
                                    n_iter=1, 
                                    random_state=run, 
                                    verbose=True,
                                    # tune these params to get a close distribution
                                    split_param=[0.5, 0.15, 0.7])
        splitter3.split()
        splits_level3[run] = splitter3.splits[0]
    pkl_utils._save("%s/splits_level3.pkl"%config.SPLIT_DIR, splits_level3) 
開發者ID:ChenglongChen,項目名稱:kaggle-HomeDepot,代碼行數:55,代碼來源:splitter.py

示例11: add_prediction_op

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_prediction_op(self):
        self.add_embedding()

        with tf.name_scope("sentence_repr"):
            attention_w = tf.get_variable("attention_w", [self.state_size, 1])
            cell_forward = tf.contrib.rnn.LSTMCell(self.state_size)
            cell_backward = tf.contrib.rnn.LSTMCell(self.state_size)
            cell_forward = tf.contrib.rnn.DropoutWrapper(cell_forward,
                input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout,
                seed=config.RANDOM_SEED)
            cell_backward = tf.contrib.rnn.DropoutWrapper(cell_backward,
                input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout,
                seed=config.RANDOM_SEED)

            outputs, states = tf.nn.bidirectional_dynamic_rnn(
                cell_forward, cell_backward, self.input_sentences,
                sequence_length=self.input_textlen_flatten, dtype=tf.float32)
            outputs_added = tf.nn.tanh(tf.add(outputs[0], outputs[1]))
            alpha = tf.nn.softmax(tf.reshape(tf.matmul(tf.reshape(outputs_added,
                [-1, self.state_size]), attention_w), [-1, self.sequence_length]))
            alpha = tf.expand_dims(alpha, 1)
            self.sen_repr = tf.squeeze(tf.matmul(alpha, outputs_added))

        self.output_features = self.sen_repr
        self.output_dim = self.state_size

        with tf.name_scope("sentence_att"):
            attention_A = tf.get_variable("attention_A", shape=[self.output_dim])
            query_r = tf.get_variable("query_r", shape=[self.output_dim, 1])

            sen_repre = tf.tanh(self.output_features)
            sen_alpha = tf.expand_dims(tf.nn.softmax(tf.reshape(tf.matmul(tf.multiply(sen_repre,
                attention_A), query_r), [-1, config.BAG_SIZE])), 1)
            sen_s = tf.reshape(tf.matmul(sen_alpha, tf.reshape(sen_repre,
                [-1, config.BAG_SIZE, self.output_dim])), [-1, self.output_dim])

        h_drop = tf.nn.dropout(tf.nn.relu(sen_s), self.dense_dropout, seed=config.RANDOM_SEED)
        h_drop.set_shape([None, self.output_dim])
        h_output = tf.layers.batch_normalization(h_drop, training=self.phase)
        for i in range(self.hidden_layers):
            h_output = self.add_hidden_layer(h_output, i)

        with tf.variable_scope("output"):
            W = tf.get_variable("W", shape=[self.hidden_size, self.num_classes],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            b = tf.get_variable("b", shape=[self.num_classes],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            self.scores = tf.nn.xw_plus_b(h_output, W, b, name="scores")
            self.probs = tf.nn.softmax(self.scores, name="probs")
            self.predictions = tf.argmax(self.probs, 1, name="predictions") 
開發者ID:billy-inn,項目名稱:HRERE,代碼行數:52,代碼來源:bilstm.py

示例12: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def __init__(self, model_name, runs, params_dict, logger):
        print("Loading data...")
        words, positions, heads, tails, labels = pkl_utils._load(config.GROUPED_TRAIN_DATA)
        words_test, positions_test, heads_test, tails_test, labels_test = pkl_utils._load(config.GROUPED_TEST_DATA) # noqa

        self.embedding = embedding_utils.Embedding(
            config.EMBEDDING_DATA,
            list([s for bags in words for s in bags]) +
            list([s for bags in words_test for s in bags]),
            config.MAX_DOCUMENT_LENGTH)

        print("Preprocessing data...")
        textlen = np.array([[self.embedding.len_transform(x) for x in y] for y in words])
        words = np.array([[self.embedding.text_transform(x) for x in y] for y in words])
        positions = np.array([[self.embedding.position_transform(x) for x in y] for y in positions])

        textlen_test = np.array([[self.embedding.len_transform(x) for x in y] for y in words_test])
        words_test = np.array([[self.embedding.text_transform(x) for x in y] for y in words_test])
        positions_test = np.array([[self.embedding.position_transform(x) for x in y] for y in positions_test]) # noqa

        ss = ShuffleSplit(n_splits=1, test_size=0.1, random_state=config.RANDOM_SEED)
        for train_index, valid_index in ss.split(np.zeros(len(labels)), labels):
            words_train, words_valid = words[train_index], words[valid_index]
            textlen_train, textlen_valid = textlen[train_index], textlen[valid_index]
            positions_train, positions_valid = positions[train_index], positions[valid_index]
            heads_train, heads_valid = heads[train_index], heads[valid_index]
            tails_train, tails_valid = tails[train_index], tails[valid_index]
            labels_train, labels_valid = labels[train_index], labels[valid_index]
        if "hrere" in model_name:
            self.full_set = list(zip(words, textlen, positions, heads, tails, labels))
            self.train_set = list(zip(words_train, textlen_train, positions_train, heads_train, tails_train, labels_train)) # noqa
            self.valid_set = list(zip(words_valid, textlen_valid, positions_valid, heads_valid, tails_valid, labels_valid)) # noqa
            self.test_set = list(zip(words_test, textlen_test, positions_test, heads_test, tails_test, labels_test)) # noqa
            if "complex" in model_name:
                self.entity_embedding1 = np.load(config.ENTITY_EMBEDDING1)
                self.entity_embedding2 = np.load(config.ENTITY_EMBEDDING2)
                self.relation_embedding1 = np.load(config.RELATION_EMBEDDING1)
                self.relation_embedding2 = np.load(config.RELATION_EMBEDDING2)
            else:
                self.entity_embedding = np.load(config.ENTITY_EMBEDDING)
                self.relation_embedding = np.load(config.RELATION_EMBEDDING)
        else:
            self.full_set = list(zip(words, textlen, positions, labels))
            self.train_set = list(zip(words_train, textlen_train, positions_train, labels_train)) # noqa
            self.valid_set = list(zip(words_valid, textlen_valid, positions_valid, labels_valid)) # noqa
            self.test_set = list(zip(words_test, textlen_test, positions_test, labels_test)) # noqa

        self.model_name = model_name
        self.runs = runs
        self.params_dict = params_dict
        self.hparams = AttrDict(params_dict)
        self.logger = logger

        self.model = self._get_model()
        self.saver = tf.train.Saver(tf.global_variables())
        checkpoint_dir = os.path.abspath(config.CHECKPOINT_DIR)
        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)
        self.checkpoint_prefix = os.path.join(checkpoint_dir, self.__str__()) 
開發者ID:billy-inn,項目名稱:HRERE,代碼行數:61,代碼來源:task.py

示例13: add_prediction_op

# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_prediction_op(self):
        self.add_embedding()

        with tf.name_scope("sentence_repr"):
            attention_w = tf.get_variable("attention_w", [self.state_size, 1])
            cell_forward = tf.contrib.rnn.LSTMCell(self.state_size)
            cell_backward = tf.contrib.rnn.LSTMCell(self.state_size)
            cell_forward = tf.contrib.rnn.DropoutWrapper(cell_forward, input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout, seed=config.RANDOM_SEED)
            cell_backward = tf.contrib.rnn.DropoutWrapper(cell_backward, input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout, seed=config.RANDOM_SEED)

            outputs, states = tf.nn.bidirectional_dynamic_rnn(
                    cell_forward, cell_backward, self.input_sentences,
                    sequence_length=self.input_textlen, dtype=tf.float32)
            outputs_added = tf.nn.tanh(tf.add(outputs[0], outputs[1]))
            alpha = tf.nn.softmax(tf.reshape(tf.matmul(tf.reshape(outputs_added, [-1, self.state_size]), attention_w), [-1, self.sequence_length]))
            alpha = tf.expand_dims(alpha, 1)
            self.sen_repr = tf.squeeze(tf.matmul(alpha, outputs_added))

        with tf.name_scope("mention_repr"):
            cell = tf.contrib.rnn.LSTMCell(self.state_size)
            cell = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout, seed=config.RANDOM_SEED)

            outputs, states = tf.nn.dynamic_rnn(
                cell, self.embedded_mentions,
                sequence_length=self.input_mentionlen, dtype=tf.float32)
            self.men_repr = self.extract_last_relevant(outputs, self.input_mentionlen)

        self.features = tf.concat([self.sen_repr, self.men_repr, self.mention_embedding], -1)
        self.feature_dim = self.state_size * 2 + self.embedding_size

        h_drop = tf.nn.dropout(tf.nn.relu(self.features), self.dense_dropout, seed=config.RANDOM_SEED)
        h_drop.set_shape([None, self.feature_dim])
        h_output = tf.layers.batch_normalization(h_drop, training=self.phase)
        for i in range(self.hidden_layers):
            h_output = self.add_hidden_layer(h_output, i)
        if self.hidden_layers == 0:
            self.hidden_size = self.feature_dim

        with tf.variable_scope("output"):
            W = tf.get_variable("W", shape=[self.hidden_size, self.num_classes],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            b = tf.get_variable("b", shape=[self.num_classes],
                    initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
            self.scores = tf.nn.xw_plus_b(h_output, W, b, name="scores")
            self.proba = tf.nn.softmax(self.scores, name="proba")

            self.adjusted_proba = tf.matmul(self.proba, self.tune)
            self.adjusted_proba = tf.clip_by_value(self.adjusted_proba, 1e-10, 1.0)
            self.predictions = tf.argmax(self.adjusted_proba, 1, name="predictions") 
開發者ID:billy-inn,項目名稱:NFETC,代碼行數:51,代碼來源:nfetc.py


注:本文中的config.RANDOM_SEED屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。