本文整理匯總了Python中config.RANDOM_SEED屬性的典型用法代碼示例。如果您正苦於以下問題:Python config.RANDOM_SEED屬性的具體用法?Python config.RANDOM_SEED怎麽用?Python config.RANDOM_SEED使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類config
的用法示例。
在下文中一共展示了config.RANDOM_SEED屬性的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: transform
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def transform(self):
# ngrams
obs_ngrams = list(map(lambda x: ngram_utils._ngrams(x.split(" "), self.obs_ngram, "_"), self.obs_corpus))
target_ngrams = list(map(lambda x: ngram_utils._ngrams(x.split(" "), self.target_ngram, "_"), self.target_corpus))
# cooccurrence ngrams
cooc_terms = list(map(lambda lst1,lst2: self._get_cooc_terms(lst1, lst2, "X"), obs_ngrams, target_ngrams))
## tfidf
tfidf = self._init_word_ngram_tfidf(ngram=1)
X = tfidf.fit_transform(cooc_terms)
## svd
svd = TruncatedSVD(n_components=self.svd_dim,
n_iter=self.svd_n_iter, random_state=config.RANDOM_SEED)
return svd.fit_transform(X)
# 2nd in CrowdFlower (preprocessing_mikhail.py)
示例2: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def main():
train_x, train_y = _load_data()
print('loading data done!')
folds = list(StratifiedKFold(n_splits=10, shuffle=True,
random_state=config.RANDOM_SEED).split(train_x, train_y))
fold_index = []
for i,(train_id, valid_id) in enumerate(folds):
fold_index.append(valid_id)
print("fold num: %d" % (len(fold_index)))
fold_index = np.array(fold_index)
np.save(config.DATA_PATH + "fold_index.npy", fold_index)
save_x_y(fold_index, train_x, train_y)
print("save train_x_y done!")
fold_index = np.load(config.DATA_PATH + "fold_index.npy")
save_i(fold_index)
print("save index done!")
示例3: _get_model
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def _get_model(self):
np.random.seed(config.RANDOM_SEED)
kwargs = {
"sequence_length": config.MAX_DOCUMENT_LENGTH,
"mention_length": config.MENTION_SIZE,
"num_classes": self.num_types,
"vocab_size": self.embedding.vocab_size,
"embedding_size": self.embedding.embedding_dim,
"position_size": self.embedding.position_size,
"pretrained_embedding": self.embedding.embedding,
"wpe": np.random.random_sample((self.embedding.position_size, self.hparams.wpe_dim)),
"type_info": self.type_info,
"hparams": self.hparams
}
if "nfetc" in self.model_name:
return NFETC(**kwargs)
else:
raise AttributeError("Invalid model name!")
示例4: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def main(options):
# create sub folder
subm_folder = "%s/ensemble_selection"%config.SUBM_DIR
os_utils._create_dirs( [subm_folder] )
subm_prefix = "%s/test.pred.[%s]" % (subm_folder, options.outfile)
# get model list
log_folder = "%s/level%d_models"%(config.LOG_DIR, options.level-1)
model_list = get_model_list(log_folder, options.size)
# get instance splitter
if options.level not in [2, 3]:
inst_splitter = None
elif options.level == 2:
inst_splitter = splitter_level2
elif options.level == 3:
inst_splitter = splitter_level3
ees = ExtremeEnsembleSelection(
model_folder=config.OUTPUT_DIR,
model_list=model_list,
subm_prefix=subm_prefix,
weight_opt_max_evals=options.weight_opt_max_evals,
w_min=-1.,
w_max=1.,
inst_subsample=options.inst_subsample,
inst_subsample_replacement=options.inst_subsample_replacement,
inst_splitter=inst_splitter,
model_subsample=options.model_subsample,
model_subsample_replacement=options.model_subsample_replacement,
bagging_size=options.bagging_size,
init_top_k=options.init_top_k,
epsilon=options.epsilon,
multiprocessing=False,
multiprocessing_num_cores=config.NUM_CORES,
enable_extreme=options.enable_extreme,
random_seed=config.RANDOM_SEED
)
ees.go()
示例5: __init__
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def __init__(self, dfTrain, dfTest, n_iter=5, random_state=config.RANDOM_SEED,
verbose=False, plot=False, split_param=[0.5, 0.25, 0.5]):
self.dfTrain = dfTrain
self.dfTest = dfTest
self.n_iter = n_iter
self.random_state = random_state
self.verbose = verbose
self.plot = plot
self.split_param = split_param
示例6: add_hidden_layer
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_hidden_layer(self, x, idx):
dim = self.output_dim if idx == 0 else self.hidden_size
with tf.variable_scope("hidden_%d" % idx):
W = tf.get_variable("W", shape=[dim, self.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
b = tf.get_variable("b", shape=[self.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
self.var_list2.append(W)
self.var_list2.append(b)
h = tf.nn.xw_plus_b(x, W, b)
h_norm = tf.layers.batch_normalization(h, training=self.phase)
h_drop = tf.nn.dropout(tf.nn.relu(h_norm), self.dense_dropout, seed=config.RANDOM_SEED)
return h_drop
示例7: add_hidden_layer
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_hidden_layer(self, x, idx):
dim = self.output_dim if idx == 0 else self.hidden_size
with tf.variable_scope("hidden_%d" % idx):
W = tf.get_variable("W", shape=[dim, self.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
b = tf.get_variable("b", shape=[self.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
h = tf.nn.xw_plus_b(x, W, b)
h_norm = tf.layers.batch_normalization(h, training=self.phase)
h_drop = tf.nn.dropout(tf.nn.relu(h_norm), self.dense_dropout, seed=config.RANDOM_SEED)
return h_drop
示例8: _get_model
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def _get_model(self):
np.random.seed(config.RANDOM_SEED)
kwargs = {
"sequence_length": config.MAX_DOCUMENT_LENGTH,
"num_classes": config.NUM_RELATION,
"vocab_size": self.embedding.vocab_size,
"embedding_size": self.embedding.embedding_dim,
"position_size": self.embedding.position_size,
"pretrained_embedding": self.embedding.embedding,
"wpe": np.random.random_sample((self.embedding.position_size, self.hparams.wpe_size)),
"hparams": self.hparams,
}
if "base" in self.model_name:
return BiLSTM(**kwargs)
elif "complex_hrere" in self.model_name:
kwargs["entity_embedding1"] = self.entity_embedding1
kwargs["entity_embedding2"] = self.entity_embedding2
kwargs["relation_embedding1"] = self.relation_embedding1
kwargs["relation_embedding2"] = self.relation_embedding2
return ComplexHRERE(**kwargs)
elif "real_hrere" in self.model_name:
kwargs["entity_embedding"] = self.entity_embedding
kwargs["relation_embedding"] = self.relation_embedding
return RealHRERE(**kwargs)
else:
raise AttributeError("Invalid model name!")
示例9: add_hidden_layer
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_hidden_layer(self, x, idx):
dim = self.feature_dim if idx == 0 else self.hidden_size
with tf.variable_scope("hidden_%d" % idx):
W = tf.get_variable("W", shape=[dim, self.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
b = tf.get_variable("b", shape=[self.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
h = tf.nn.xw_plus_b(x, W, b)
h_norm = tf.layers.batch_normalization(h, training=self.phase)
h_drop = tf.nn.dropout(tf.nn.relu(h_norm), self.dense_dropout, seed=config.RANDOM_SEED)
return h_drop
示例10: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def main():
dfTrain = pd.read_csv(config.TRAIN_DATA, encoding="ISO-8859-1")
dfTest = pd.read_csv(config.TEST_DATA, encoding="ISO-8859-1")
# splits for level1
splitter = HomedepotSplitter(dfTrain=dfTrain,
dfTest=dfTest,
n_iter=config.N_RUNS,
random_state=config.RANDOM_SEED,
verbose=True,
plot=True,
# tune these params to get a close distribution
split_param=[0.5, 0.25, 0.5],
)
splitter.split()
splitter.save("%s/splits_level1.pkl"%config.SPLIT_DIR)
splits_level1 = splitter.splits
## splits for level2
splits_level1 = pkl_utils._load("%s/splits_level1.pkl"%config.SPLIT_DIR)
splits_level2 = [0]*config.N_RUNS
for run, (trainInd, validInd) in enumerate(splits_level1):
dfValid = dfTrain.iloc[validInd].copy()
splitter2 = HomedepotSplitter(dfTrain=dfValid,
dfTest=dfTest,
n_iter=1,
random_state=run,
verbose=True,
# tune these params to get a close distribution
split_param=[0.5, 0.15, 0.6])
splitter2.split()
splits_level2[run] = splitter2.splits[0]
pkl_utils._save("%s/splits_level2.pkl"%config.SPLIT_DIR, splits_level2)
## splits for level3
splits_level2 = pkl_utils._load("%s/splits_level2.pkl"%config.SPLIT_DIR)
splits_level3 = [0]*config.N_RUNS
for run, (trainInd, validInd) in enumerate(splits_level2):
dfValid = dfTrain.iloc[validInd].copy()
splitter3 = HomedepotSplitter(dfTrain=dfValid,
dfTest=dfTest,
n_iter=1,
random_state=run,
verbose=True,
# tune these params to get a close distribution
split_param=[0.5, 0.15, 0.7])
splitter3.split()
splits_level3[run] = splitter3.splits[0]
pkl_utils._save("%s/splits_level3.pkl"%config.SPLIT_DIR, splits_level3)
示例11: add_prediction_op
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_prediction_op(self):
self.add_embedding()
with tf.name_scope("sentence_repr"):
attention_w = tf.get_variable("attention_w", [self.state_size, 1])
cell_forward = tf.contrib.rnn.LSTMCell(self.state_size)
cell_backward = tf.contrib.rnn.LSTMCell(self.state_size)
cell_forward = tf.contrib.rnn.DropoutWrapper(cell_forward,
input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout,
seed=config.RANDOM_SEED)
cell_backward = tf.contrib.rnn.DropoutWrapper(cell_backward,
input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout,
seed=config.RANDOM_SEED)
outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_forward, cell_backward, self.input_sentences,
sequence_length=self.input_textlen_flatten, dtype=tf.float32)
outputs_added = tf.nn.tanh(tf.add(outputs[0], outputs[1]))
alpha = tf.nn.softmax(tf.reshape(tf.matmul(tf.reshape(outputs_added,
[-1, self.state_size]), attention_w), [-1, self.sequence_length]))
alpha = tf.expand_dims(alpha, 1)
self.sen_repr = tf.squeeze(tf.matmul(alpha, outputs_added))
self.output_features = self.sen_repr
self.output_dim = self.state_size
with tf.name_scope("sentence_att"):
attention_A = tf.get_variable("attention_A", shape=[self.output_dim])
query_r = tf.get_variable("query_r", shape=[self.output_dim, 1])
sen_repre = tf.tanh(self.output_features)
sen_alpha = tf.expand_dims(tf.nn.softmax(tf.reshape(tf.matmul(tf.multiply(sen_repre,
attention_A), query_r), [-1, config.BAG_SIZE])), 1)
sen_s = tf.reshape(tf.matmul(sen_alpha, tf.reshape(sen_repre,
[-1, config.BAG_SIZE, self.output_dim])), [-1, self.output_dim])
h_drop = tf.nn.dropout(tf.nn.relu(sen_s), self.dense_dropout, seed=config.RANDOM_SEED)
h_drop.set_shape([None, self.output_dim])
h_output = tf.layers.batch_normalization(h_drop, training=self.phase)
for i in range(self.hidden_layers):
h_output = self.add_hidden_layer(h_output, i)
with tf.variable_scope("output"):
W = tf.get_variable("W", shape=[self.hidden_size, self.num_classes],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
b = tf.get_variable("b", shape=[self.num_classes],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
self.scores = tf.nn.xw_plus_b(h_output, W, b, name="scores")
self.probs = tf.nn.softmax(self.scores, name="probs")
self.predictions = tf.argmax(self.probs, 1, name="predictions")
示例12: __init__
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def __init__(self, model_name, runs, params_dict, logger):
print("Loading data...")
words, positions, heads, tails, labels = pkl_utils._load(config.GROUPED_TRAIN_DATA)
words_test, positions_test, heads_test, tails_test, labels_test = pkl_utils._load(config.GROUPED_TEST_DATA) # noqa
self.embedding = embedding_utils.Embedding(
config.EMBEDDING_DATA,
list([s for bags in words for s in bags]) +
list([s for bags in words_test for s in bags]),
config.MAX_DOCUMENT_LENGTH)
print("Preprocessing data...")
textlen = np.array([[self.embedding.len_transform(x) for x in y] for y in words])
words = np.array([[self.embedding.text_transform(x) for x in y] for y in words])
positions = np.array([[self.embedding.position_transform(x) for x in y] for y in positions])
textlen_test = np.array([[self.embedding.len_transform(x) for x in y] for y in words_test])
words_test = np.array([[self.embedding.text_transform(x) for x in y] for y in words_test])
positions_test = np.array([[self.embedding.position_transform(x) for x in y] for y in positions_test]) # noqa
ss = ShuffleSplit(n_splits=1, test_size=0.1, random_state=config.RANDOM_SEED)
for train_index, valid_index in ss.split(np.zeros(len(labels)), labels):
words_train, words_valid = words[train_index], words[valid_index]
textlen_train, textlen_valid = textlen[train_index], textlen[valid_index]
positions_train, positions_valid = positions[train_index], positions[valid_index]
heads_train, heads_valid = heads[train_index], heads[valid_index]
tails_train, tails_valid = tails[train_index], tails[valid_index]
labels_train, labels_valid = labels[train_index], labels[valid_index]
if "hrere" in model_name:
self.full_set = list(zip(words, textlen, positions, heads, tails, labels))
self.train_set = list(zip(words_train, textlen_train, positions_train, heads_train, tails_train, labels_train)) # noqa
self.valid_set = list(zip(words_valid, textlen_valid, positions_valid, heads_valid, tails_valid, labels_valid)) # noqa
self.test_set = list(zip(words_test, textlen_test, positions_test, heads_test, tails_test, labels_test)) # noqa
if "complex" in model_name:
self.entity_embedding1 = np.load(config.ENTITY_EMBEDDING1)
self.entity_embedding2 = np.load(config.ENTITY_EMBEDDING2)
self.relation_embedding1 = np.load(config.RELATION_EMBEDDING1)
self.relation_embedding2 = np.load(config.RELATION_EMBEDDING2)
else:
self.entity_embedding = np.load(config.ENTITY_EMBEDDING)
self.relation_embedding = np.load(config.RELATION_EMBEDDING)
else:
self.full_set = list(zip(words, textlen, positions, labels))
self.train_set = list(zip(words_train, textlen_train, positions_train, labels_train)) # noqa
self.valid_set = list(zip(words_valid, textlen_valid, positions_valid, labels_valid)) # noqa
self.test_set = list(zip(words_test, textlen_test, positions_test, labels_test)) # noqa
self.model_name = model_name
self.runs = runs
self.params_dict = params_dict
self.hparams = AttrDict(params_dict)
self.logger = logger
self.model = self._get_model()
self.saver = tf.train.Saver(tf.global_variables())
checkpoint_dir = os.path.abspath(config.CHECKPOINT_DIR)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.checkpoint_prefix = os.path.join(checkpoint_dir, self.__str__())
示例13: add_prediction_op
# 需要導入模塊: import config [as 別名]
# 或者: from config import RANDOM_SEED [as 別名]
def add_prediction_op(self):
self.add_embedding()
with tf.name_scope("sentence_repr"):
attention_w = tf.get_variable("attention_w", [self.state_size, 1])
cell_forward = tf.contrib.rnn.LSTMCell(self.state_size)
cell_backward = tf.contrib.rnn.LSTMCell(self.state_size)
cell_forward = tf.contrib.rnn.DropoutWrapper(cell_forward, input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout, seed=config.RANDOM_SEED)
cell_backward = tf.contrib.rnn.DropoutWrapper(cell_backward, input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout, seed=config.RANDOM_SEED)
outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_forward, cell_backward, self.input_sentences,
sequence_length=self.input_textlen, dtype=tf.float32)
outputs_added = tf.nn.tanh(tf.add(outputs[0], outputs[1]))
alpha = tf.nn.softmax(tf.reshape(tf.matmul(tf.reshape(outputs_added, [-1, self.state_size]), attention_w), [-1, self.sequence_length]))
alpha = tf.expand_dims(alpha, 1)
self.sen_repr = tf.squeeze(tf.matmul(alpha, outputs_added))
with tf.name_scope("mention_repr"):
cell = tf.contrib.rnn.LSTMCell(self.state_size)
cell = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=self.dense_dropout, output_keep_prob=self.rnn_dropout, seed=config.RANDOM_SEED)
outputs, states = tf.nn.dynamic_rnn(
cell, self.embedded_mentions,
sequence_length=self.input_mentionlen, dtype=tf.float32)
self.men_repr = self.extract_last_relevant(outputs, self.input_mentionlen)
self.features = tf.concat([self.sen_repr, self.men_repr, self.mention_embedding], -1)
self.feature_dim = self.state_size * 2 + self.embedding_size
h_drop = tf.nn.dropout(tf.nn.relu(self.features), self.dense_dropout, seed=config.RANDOM_SEED)
h_drop.set_shape([None, self.feature_dim])
h_output = tf.layers.batch_normalization(h_drop, training=self.phase)
for i in range(self.hidden_layers):
h_output = self.add_hidden_layer(h_output, i)
if self.hidden_layers == 0:
self.hidden_size = self.feature_dim
with tf.variable_scope("output"):
W = tf.get_variable("W", shape=[self.hidden_size, self.num_classes],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
b = tf.get_variable("b", shape=[self.num_classes],
initializer=tf.contrib.layers.xavier_initializer(seed=config.RANDOM_SEED))
self.scores = tf.nn.xw_plus_b(h_output, W, b, name="scores")
self.proba = tf.nn.softmax(self.scores, name="proba")
self.adjusted_proba = tf.matmul(self.proba, self.tune)
self.adjusted_proba = tf.clip_by_value(self.adjusted_proba, 1e-10, 1.0)
self.predictions = tf.argmax(self.adjusted_proba, 1, name="predictions")