本文整理匯總了Python中config.OUTPUT_DIR屬性的典型用法代碼示例。如果您正苦於以下問題:Python config.OUTPUT_DIR屬性的具體用法?Python config.OUTPUT_DIR怎麽用?Python config.OUTPUT_DIR使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類config
的用法示例。
在下文中一共展示了config.OUTPUT_DIR屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: active_search
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def active_search(self):
scanable_domain = set()
for d in self.subdomains:
scanable_domain.update(tools.scanable_subdomain(d))
self.subdomains = set(filter(lambda x: not x.startswith('*.'), self.subdomains))
scanable_domain.update(self.domains)
for domain in scanable_domain:
isext, ip = tools.check_extensive_domain(domain)
if isext:
self.extensive_domain.add(domain)
if not os.path.exists(os.path.join(config.OUTPUT_DIR, '%s.txt'%domain)):
if tools.get_domain(domain) == domain:
d = subDomainsBrute.SubNameBrute(target=domain, options=subDomainsBruteOpt(domain))
else:
d = subDomainsBrute.SubNameBrute(target=domain, options=subDomainsBruteOpt(domain, "next_sub.txt"))
d.run()
d.outfile.flush()
d.outfile.close()
r = helper.parse_domains_brute(domain, ip)
self.subdomains.update(r.keys())
self.domain_ip.update(r)
示例2: install_ports
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def install_ports():
sqlitepath = os.path.join(config.OUTPUT_DIR, "ports.db")
install = ''
if not os.path.exists(sqlitepath):
install = '''
CREATE TABLE open(
`ip` VARCHAR(64) NOT NULL,
`port` INTEGER,
`service` varchar(64),
`comment` TEXT,
PRIMARY KEY(`ip`, `port`)
);
'''
if install:
conn = conn = get_ports_conn()
cursor = conn.cursor()
cursor.execute(install)
conn.commit()
conn.close()
示例3: install_domains
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def install_domains():
sqlitepath = os.path.join(config.OUTPUT_DIR, "domains.db")
install = ''
if not os.path.exists(sqlitepath):
install = '''
CREATE TABLE `domains`(
`domain` varchar(255) NOT NULL,
`ip` TEXT NOT NULL,
`cname` varchar(255),
`cdn` INTEGER,
`internal` INTEGER,
PRIMARY KEY(`domain`, `ip`)
);
'''
if install:
conn = get_domains_conn()
cursor = conn.cursor()
cursor.execute(install)
conn.commit()
conn.close()
示例4: get_scores
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def get_scores(self, preds, save=False):
preds = [label_path(self.id2type[x]) for x in preds]
def vec2type(v):
s = []
for i in range(len(v)):
if v[i]:
s.extend(label_path(self.id2type[i]))
return set(s)
labels_test = [vec2type(x) for x in self.labels_test]
if save:
labels_test = [vec2type(x) for x in self.labels]
acc = strict(labels_test, preds)
_, _, macro = loose_macro(labels_test, preds)
_, _, micro = loose_micro(labels_test, preds)
if save:
outfile = open(os.path.join(config.OUTPUT_DIR, self.__str__() + ".tsv"), "w")
for x, y in zip(preds, labels_test):
t1 = "|".join(list(x))
t2 = "|".join(list(y))
outfile.write(t1 + "\t" + t2 + "\n")
outfile.close()
return acc, macro, micro
示例5: check_valid
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def check_valid(model):
file = "%s/All/test.pred.%s.csv" % (config.OUTPUT_DIR, model)
try:
df = pd.read_csv(file)
if df.shape[0] == config.TEST_SIZE:
return True
else:
return False
except:
return False
示例6: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def main(options):
# create sub folder
subm_folder = "%s/ensemble_selection"%config.SUBM_DIR
os_utils._create_dirs( [subm_folder] )
subm_prefix = "%s/test.pred.[%s]" % (subm_folder, options.outfile)
# get model list
log_folder = "%s/level%d_models"%(config.LOG_DIR, options.level-1)
model_list = get_model_list(log_folder, options.size)
# get instance splitter
if options.level not in [2, 3]:
inst_splitter = None
elif options.level == 2:
inst_splitter = splitter_level2
elif options.level == 3:
inst_splitter = splitter_level3
ees = ExtremeEnsembleSelection(
model_folder=config.OUTPUT_DIR,
model_list=model_list,
subm_prefix=subm_prefix,
weight_opt_max_evals=options.weight_opt_max_evals,
w_min=-1.,
w_max=1.,
inst_subsample=options.inst_subsample,
inst_subsample_replacement=options.inst_subsample_replacement,
inst_splitter=inst_splitter,
model_subsample=options.model_subsample,
model_subsample_replacement=options.model_subsample_replacement,
bagging_size=options.bagging_size,
init_top_k=options.init_top_k,
epsilon=options.epsilon,
multiprocessing=False,
multiprocessing_num_cores=config.NUM_CORES,
enable_extreme=options.enable_extreme,
random_seed=config.RANDOM_SEED
)
ees.go()
示例7: refit
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def refit(self):
X_train, y_train, X_test = self.feature._get_train_test_data()
if self.plot_importance:
feature_names = self.feature._get_feature_names()
self.learner.fit(X_train, y_train, feature_names)
y_pred = self.learner.predict(X_test, feature_names)
else:
self.learner.fit(X_train, y_train)
y_pred = self.learner.predict(X_test)
id_test = self.feature.data_dict["id_test"].astype(int)
# save
fname = "%s/%s/test.pred.%s.csv"%(config.OUTPUT_DIR, "All", self.__str__())
pd.DataFrame({"id": id_test, "prediction": y_pred}).to_csv(fname, index=False)
if hasattr(self.learner.learner, "predict_proba"):
if self.plot_importance:
feature_names = self.feature._get_feature_names()
y_proba = self.learner.learner.predict_proba(X_test, feature_names)
else:
y_proba = self.learner.learner.predict_proba(X_test)
fname = "%s/%s/test.proba.%s.csv"%(config.OUTPUT_DIR, "All", self.__str__())
columns = ["proba%d"%i for i in range(y_proba.shape[1])]
df = pd.DataFrame(y_proba, columns=columns)
df["id"] = id_test
df.to_csv(fname, index=False)
# submission
fname = "%s/test.pred.%s.[Mean%.6f]_[Std%.6f].csv"%(
config.SUBM_DIR, self.__str__(), self.rmse_cv_mean, self.rmse_cv_std)
pd.DataFrame({"id": id_test, "relevance": y_pred}).to_csv(fname, index=False)
# plot importance
if self.plot_importance:
ax = self.learner.plot_importance()
ax.figure.savefig("%s/%s.pdf"%(config.FIG_DIR, self.__str__()))
return self
示例8: create_directories
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def create_directories():
"""Create all the directories in the /data directories which are used for preprocessing/training/evaluating."""
directories = [TILES_DIR, WATER_BITMAPS_DIR, WGS84_DIR, LABELS_DIR, MODELS_DIR, OUTPUT_DIR, TENSORBOARD_DIR]
for directory in directories:
save_makedirs(directory)
示例9: __init__
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def __init__(self, domain, dictionary="subnames.txt"):
self.file= "subDomainsBrute"+os.sep+"dict"+os.sep+dictionary
self.threads = 200
self.output = os.path.join(config.OUTPUT_DIR, '%s.txt'%domain)
self.i = False
self.full_scan = False
示例10: process_subdomain
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def process_subdomain(self):
helper.install_domains()
sqlitepath = os.path.join(config.OUTPUT_DIR,'domains.db')
conn = db.connect(sqlitepath)
conn.text_factory = str
cursor = conn.cursor()
sql = "INSERT INTO domains(domain, ip, cname, cdn, internal) VALUES(?, ?, ?, ?, ?)"
ips = set()
cdn_ip = set()
self.subdomains.update(self.domains)
for domain in self.subdomains:
cname = tools.get_cname(domain)
cdn = tools.get_cdn(domain, cname)
ipl = self.domain_ip.get(domain, None)
if cdn:
self.cdn_domain.add(domain)
if not ipl:
ipl = tools.resolve_host_ip(domain)
else:
ipl = ipl.split(",")
for ip in ipl:
internal = tools.is_internal_ip(ip)
if not cdn and not internal:
ips.add(ip)
elif cdn:
self.takeover_domain_check.add((domain, ip, cname))
cdn_ip.add(ip)
if not internal:
self.internal_domain.add(domain)
try:
status = cursor.execute(sql, (domain, ip, cname, cdn, internal))
conn.commit()
except Exception as e:
print e
self.ips = ips-cdn_ip
with open(os.path.join(config.OUTPUT_DIR,config.IPS), 'w') as f:
f.write('\n'.join(self.ips).strip())
示例11: report_subdomain
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def report_subdomain(self):
domains = set()
conn = helper.get_domains_conn()
cur = conn.cursor()
cur.execute("SELECT * FROM domains WHERE cdn=0 and internal=0")
rows = cur.fetchall()
for row in rows:
domain, ip, cname, cdn, internal = row
domains.add(domain)
json.dump(list(domains), open(os.path.join(config.OUTPUT_DIR, "all_subdomains.json"), "w"))
示例12: report
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def report(self):
json.dump(self.ip_all, open(os.path.join(config.OUTPUT_DIR, "ip_all.json"), "w"))
json.dump(list(self.cdn_domain), open(os.path.join(config.OUTPUT_DIR, "cdn_domain.json"), "w"))
json.dump(list(self.internal_domain), open(os.path.join(config.OUTPUT_DIR, "internal_domain.json"), "w"))
json.dump(list(self.extensive_domain), open(os.path.join(config.OUTPUT_DIR, "extensive_domain.json"), "w"))
with open(os.path.join(config.OUTPUT_DIR, 'domain_takeover.txt'), 'a') as f:
f.write('\n'.join(self.takeover_domain).strip())
tools.report(self.ip_all, outname=config.REPORT_FILENAME)
示例13: get_domains_conn
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def get_domains_conn():
sqlitepath = os.path.join(config.OUTPUT_DIR, "domains.db")
conn = db.connect(sqlitepath)
conn.text_factory = str
return conn
示例14: get_ports_conn
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def get_ports_conn():
sqlitepath = os.path.join(config.OUTPUT_DIR, "ports.db")
conn = db.connect(sqlitepath)
conn.text_factory = str
return conn
示例15: cv
# 需要導入模塊: import config [as 別名]
# 或者: from config import OUTPUT_DIR [as 別名]
def cv(self):
start = time.time()
if self.verbose:
self.logger.info("="*50)
self.logger.info("Task")
self.logger.info(" %s" % str(self.__str__()))
self.logger.info("Param")
self._print_param_dict(self.learner.param_dict)
self.logger.info("Result")
self.logger.info(" Run RMSE Shape")
rmse_cv = np.zeros(self.n_iter)
for i in range(self.n_iter):
# data
X_train, y_train, X_valid, y_valid = self.feature._get_train_valid_data(i)
# fit
self.learner.fit(X_train, y_train)
y_pred = self.learner.predict(X_valid)
rmse_cv[i] = dist_utils._rmse(y_valid, y_pred)
# log
self.logger.info(" {:>3} {:>8} {} x {}".format(
i+1, np.round(rmse_cv[i],6), X_train.shape[0], X_train.shape[1]))
# save
fname = "%s/Run%d/valid.pred.%s.csv"%(config.OUTPUT_DIR, i+1, self.__str__())
df = pd.DataFrame({"target": y_valid, "prediction": y_pred})
df.to_csv(fname, index=False, columns=["target", "prediction"])
if hasattr(self.learner.learner, "predict_proba"):
y_proba = self.learner.learner.predict_proba(X_valid)
fname = "%s/Run%d/valid.proba.%s.csv"%(config.OUTPUT_DIR, i+1, self.__str__())
columns = ["proba%d"%i for i in range(y_proba.shape[1])]
df = pd.DataFrame(y_proba, columns=columns)
df["target"] = y_valid
df.to_csv(fname, index=False)
self.rmse_cv_mean = np.mean(rmse_cv)
self.rmse_cv_std = np.std(rmse_cv)
end = time.time()
_sec = end - start
_min = int(_sec/60.)
if self.verbose:
self.logger.info("RMSE")
self.logger.info(" Mean: %.6f"%self.rmse_cv_mean)
self.logger.info(" Std: %.6f"%self.rmse_cv_std)
self.logger.info("Time")
if _min > 0:
self.logger.info(" %d mins"%_min)
else:
self.logger.info(" %d secs"%_sec)
self.logger.info("-"*50)
return self