本文整理匯總了Python中config.G屬性的典型用法代碼示例。如果您正苦於以下問題:Python config.G屬性的具體用法?Python config.G怎麽用?Python config.G使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類config
的用法示例。
在下文中一共展示了config.G屬性的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setup_snapshot_image_grid
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def setup_snapshot_image_grid(G, training_set,
size = '1080p', # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
layout = 'random'): # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.
# Select size.
gw = 1; gh = 1
if size == '1080p':
gw = np.clip(1920 // G.output_shape[3], 3, 32)
gh = np.clip(1080 // G.output_shape[2], 2, 32)
if size == '4k':
gw = np.clip(3840 // G.output_shape[3], 7, 32)
gh = np.clip(2160 // G.output_shape[2], 4, 32)
# Fill in reals and labels.
reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
masks = np.zeros([gw * gh] + [1, training_set.shape[-1], training_set.shape[-1]], dtype=training_set.dtype)
for idx in range(gw * gh):
x = idx % gw; y = idx // gw
while True:
real, label, mask = training_set.get_minibatch_np(1)
if layout == 'row_per_class' and training_set.label_size > 0:
if label[0, y % training_set.label_size] == 0.0:
continue
reals[idx] = real[0]
labels[idx] = label[0]
masks[idx] = mask[0]
break
# Generate latents.
latents = misc.random_latents(gw * gh, G)
return (gw, gh), reals, labels, latents, masks
#----------------------------------------------------------------------------
# Just-in-time processing of training images before feeding them to the networks.
示例2: setup_snapshot_image_grid
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def setup_snapshot_image_grid(G, training_set,
size = '1080p', # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
layout = 'random'): # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.
# Select size.
gw = 1; gh = 1
if size == '1080p':
gw = np.clip(1920 // G.output_shape[3], 3, 32)
gh = np.clip(1080 // G.output_shape[2], 2, 32)
if size == '4k':
gw = np.clip(3840 // G.output_shape[3], 7, 32)
gh = np.clip(2160 // G.output_shape[2], 4, 32)
# Fill in reals and labels.
reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
for idx in range(gw * gh):
x = idx % gw; y = idx // gw
while True:
real, label = training_set.get_minibatch_np(1)
if layout == 'row_per_class' and training_set.label_size > 0:
if label[0, y % training_set.label_size] == 0.0:
continue
reals[idx] = real[0]
labels[idx] = label[0]
break
# Generate latents.
latents = misc.random_latents(gw * gh, G)
return (gw, gh), reals, labels, latents
#----------------------------------------------------------------------------
# Just-in-time processing of training images before feeding them to the networks.
示例3: load_G_weights
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def load_G_weights(G, path, by_name = True):
G_path = os.path.join(path,'Generator.h5')
G.load_weights(G_path, by_name = by_name)
return G
示例4: predict_gan
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def predict_gan():
separate_funcs = False
drange_net = [-1,1]
drange_viz = [-1,1]
image_grid_size = None
image_grid_type = 'default'
resume_network = 'pre-trained_weight'
np.random.seed(config.random_seed)
if resume_network:
print("Resuming weight from:"+resume_network)
G = Generator(num_channels=3, resolution=128, label_size=0, **config.G)
G = load_G_weights(G,resume_network,True)
print(G.summary())
# Misc init.
if image_grid_type == 'default':
if image_grid_size is None:
w, h = G.output_shape[1], G.output_shape[2]
print("w:%d,h:%d"%(w,h))
image_grid_size = np.clip(int(1920 // w), 3, 16).astype('int'), np.clip(1080 / h, 2, 16).astype('int')
print("image_grid_size:",image_grid_size)
else:
raise ValueError('Invalid image_grid_type', image_grid_type)
result_subdir = misc.create_result_subdir('pre-trained_result', config.run_desc)
for i in range(1,6):
snapshot_fake_latents = random_latents(np.prod(image_grid_size), G.input_shape)
snapshot_fake_images = G.predict_on_batch(snapshot_fake_latents)
misc.save_image_grid(snapshot_fake_images, os.path.join(result_subdir, 'pre-trained_%03d.png'%i), drange=drange_viz, grid_size=image_grid_size)
示例5: load_GD
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def load_GD(path, compile = False):
G_path = os.path.join(path,'Generator.h5')
D_path = os.path.join(path,'Discriminator.h5')
G = load_model(G_path, compile = compile)
D = load_model(D_path, compile = compile)
return G,D
示例6: save_GD
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def save_GD(G,D,path,overwrite = False):
os.makedirs(path);
G_path = os.path.join(path,'Generator.h5')
D_path = os.path.join(path,'Discriminator.h5')
save_model(G,G_path,overwrite = overwrite)
save_model(D,D_path,overwrite = overwrite)
print("Save model to %s"%path)
示例7: load_GD_weights
# 需要導入模塊: import config [as 別名]
# 或者: from config import G [as 別名]
def load_GD_weights(G,D,path, by_name = True):
G_path = os.path.join(path,'Generator.h5')
D_path = os.path.join(path,'Discriminator.h5')
G.load_weights(G_path, by_name = by_name)
D.load_weights(D_path, by_name = by_name)
return G,D