本文整理匯總了Python中config.DEBUG屬性的典型用法代碼示例。如果您正苦於以下問題:Python config.DEBUG屬性的具體用法?Python config.DEBUG怎麽用?Python config.DEBUG使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類config
的用法示例。
在下文中一共展示了config.DEBUG屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_app
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def make_app():
static_path = os.path.join(os.path.dirname(__file__), "static")
settings = {
'static_path': static_path,
'debug': config.DEBUG
}
return tornado.web.Application([
(r"/", MainHandler),
(r"/updates", UpdatesHandler),
(r"/static/(.*)", tornado.web.StaticFileHandler, {'path': static_path}),
], **settings)
示例2: debug
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def debug(msg):
if DEBUG:
log(msg)
示例3: msg
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def msg(string, level=INFO):
""" Handle messages; this takes care of logging and
debug checking, as well as output colors
"""
string = "[%s] %s" % (timestamp(), string)
color_string = None
if 'linux' in platform.platform().lower():
if level is INFO:
color_string = '%s%s%s' % ('\033[32m', string, '\033[0m')
elif level is DEBUG:
color_string = '%s%s%s' % ('\033[34m', string, '\033[0m')
elif level is ERROR:
color_string = '%s%s%s' % ('\033[31m', string, '\033[0m')
else:
color_string = string
if not color_string:
color_string = string
if level is DEBUG and not config.DEBUG:
return
if not level is LOG:
print color_string
log(string)
示例4: preprocess_for_test_raw_output
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def preprocess_for_test_raw_output(image, output_height, output_width, data_format='NCHW', scope=None):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
Returns:
A preprocessed image.
"""
with tf.name_scope(scope, 'vgg_test_image_raw_output', [image, output_height, output_width]):
# Crop the central region of the image with an area containing 87.5% of
# the original image.
image = tf.image.resize_bilinear(image, [output_height, output_width], align_corners=False)
image = tf.squeeze(image, [0])
image.set_shape([output_height, output_width, 3])
if config.DEBUG:
save_image_op = tf.py_func(_save_image,
[image],
tf.int64, stateful=True)
image = tf.Print(image, [save_image_op])
image = tf.to_float(image)
normarlized_image = _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
if data_format == 'NCHW':
normarlized_image = tf.transpose(normarlized_image, perm=(2, 0, 1))
return tf.expand_dims(normarlized_image/255., 0)
示例5: run
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def run():
# Takes run parameters from configuration.
serverurl = urlparse(config.SERVER_BASE_URL)
mhn.run(debug=config.DEBUG, host='0.0.0.0',
port=serverurl.port)
示例6: runlocal
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def runlocal():
serverurl = urlparse(config.SERVER_BASE_URL)
mhn.run(debug=config.DEBUG, host='0.0.0.0',
port=serverurl.port)
示例7: runserver
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def runserver():
port = int(os.environ.get('PORT', DEFAULT_PORT))
app.run(host=DEFAULT_HOST, port=port, debug=DEBUG)
#------------------------------
示例8: __init__
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def __init__(self, form, lemma, cpostag, postag, feats):
self.form = form
self.lemma = lemma
self.cpostag = cpostag
self.postag = postag
self._feats = feats
if DEBUG:
self.validate()
self._fmap = None
示例9: get
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def get(self):
"""Serve the form page.
"""
logging.info('SelfJoinPage.GET')
logging.info('headers: %s', self.request.headers.items())
logging.info('params: %s', self.request.params.items())
logging.info('body: %s', self.request.body)
# Make sure (as best we can) that this is being requested from a site
# that's allowed to embed our join form.
# This is such a weak check that I'm not sure it's worth it.
#if not config.DEBUG:
# if not self.request.referer or \
# urlparse(self.request.referer).hostname not in config.ALLOWED_EMBED_REFERERS:
# webapp2.abort(403, detail='bad referer')
csrf_token = helpers.get_csrf_token(self.request)
volunteer_interests = gapps.get_volunteer_interests()
skills_categories = gapps.get_skills_categories()
template_values = {
'FIELDS': config.FIELDS,
'csrf_token': csrf_token,
'volunteer_interests': volunteer_interests,
'skills_categories': skills_categories,
'config': config,
}
template = JINJA_ENVIRONMENT.get_template('self-serve-join.jinja')
helpers.set_csrf_cookie(self.response, csrf_token)
self.response.write(template.render(template_values))
示例10: post
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def post(self):
"""Create the new volunteer.
"""
logging.info('SelfVolunteerPage.POST')
logging.info('headers: %s' % self.request.headers.items())
logging.info('params: %s' % self.request.params.items())
logging.info('body: %s' % self.request.body)
# Make sure (as best we can) that this is being requested from a site
# that's allowed to embed our join form.
# This is such a weak check that I'm not sure it's worth it.
#if not config.DEBUG:
# if not self.request.referer or \
# urlparse(self.request.referer).hostname not in config.ALLOWED_EMBED_REFERERS:
# webapp2.abort(403, detail='bad referer')
# TODO: Use new CSRF approach that doesn't need cookies.
#helpers.check_csrf(self.request)
# TODO: Don't hardcode key
referrer = self.request.params.get('_referrer') or self.request.referer
# Create a dict of the volunteer info.
new_volunteer = gapps.volunteer_dict_from_request(self.request,
referrer)
gapps.join_volunteer_from_dict(new_volunteer)
self.response.write('success')
# Queue the welcome email
taskqueue.add(url='/tasks/new-volunteer-mail', params=new_volunteer)
示例11: debug_print
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def debug_print(message, color=Colors.NONE):
""" A method which prints if DEBUG is set """
if config.DEBUG:
print(color + message + Colors.NONE)
示例12: run_server
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def run_server():
context = None
if USE_SSL and os.path.isfile(SSL_KEY_FILE) and os.path.isfile(SSL_CERT_FILE):
context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
context.load_cert_chain(SSL_CERT_FILE, SSL_KEY_FILE)
loggingserver.info('Using SSL, open interface in HTTPS')
loggingserver.info('Web interface starting')
app.run(
host=LISTEN_ADDRESS,
port=LISTEN_PORT,
debug=DEBUG,
ssl_context=context
)
示例13: log
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def log(self, txt, send_telegram=False, color=None):
if not DEBUG:
return
value = datetime.now()
if len(self) > 0:
value = self.data0.datetime.datetime()
if color:
txt = colored(txt, color)
print('[%s] %s' % (value.strftime("%d-%m-%y %H:%M"), txt))
if send_telegram:
send_telegram_message(txt)
示例14: preprocess_for_eval
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def preprocess_for_eval(image, classid, shape, output_height, output_width, key_x, key_y, key_v, norm_table, data_format, category, bbox_border, heatmap_sigma, heatmap_size, resize_side, scope=None):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
resize_side: The smallest side of the image for aspect-preserving resizing.
Returns:
A preprocessed image.
"""
with tf.name_scope(scope, 'vgg_eval_image', [image, output_height, output_width]):
# Crop the central region of the image with an area containing 87.5% of
# the original image.
fkey_x, fkey_y = tf.cast(key_x, tf.float32)/tf.cast(shape[1], tf.float32), tf.cast(key_y, tf.float32)/tf.cast(shape[0], tf.float32)
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [output_height, output_width], align_corners=False)
image = tf.squeeze(image, [0])
image.set_shape([output_height, output_width, 3])
image = tf.to_float(image)
ikey_x = tf.cast(tf.round(fkey_x * heatmap_size), tf.int64)
ikey_y = tf.cast(tf.round(fkey_y * heatmap_size), tf.int64)
targets, isvalid = draw_labelmap(ikey_x, ikey_y, heatmap_sigma, heatmap_size)
norm_gather_ind = tf.stack([norm_table[0].lookup(classid), norm_table[1].lookup(classid)], axis=-1)
key_x = tf.cast(tf.round(fkey_x * output_width), tf.int64)
key_y = tf.cast(tf.round(fkey_y * output_height), tf.int64)
norm_x, norm_y = tf.cast(tf.gather(key_x, norm_gather_ind), tf.float32), tf.cast(tf.gather(key_y, norm_gather_ind), tf.float32)
norm_x, norm_y = tf.squeeze(norm_x), tf.squeeze(norm_y)
norm_value = tf.pow(tf.pow(norm_x[0] - norm_x[1], 2.) + tf.pow(norm_y[0] - norm_y[1], 2.), .5)
if config.DEBUG:
save_image_op = tf.py_func(save_image_with_heatmap,
[image, targets,
config.left_right_group_map[category][0],
config.left_right_group_map[category][1],
config.left_right_group_map[category][2],
[output_height, output_width],
heatmap_size],
tf.int64, stateful=True)
with tf.control_dependencies([save_image_op]):
normarlized_image = _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
else:
normarlized_image = _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
if data_format == 'NCHW':
normarlized_image = tf.transpose(normarlized_image, perm=(2, 0, 1))
return normarlized_image/255., targets, key_v, isvalid, norm_value
示例15: preprocess_for_test
# 需要導入模塊: import config [as 別名]
# 或者: from config import DEBUG [as 別名]
def preprocess_for_test(image, file_name, shape, output_height, output_width, data_format='NCHW', bbox_border=25., heatmap_sigma=1., heatmap_size=64, pred_df=None, scope=None):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
Returns:
A preprocessed image.
"""
with tf.name_scope(scope, 'vgg_test_image', [image, output_height, output_width]):
# Crop the central region of the image with an area containing 87.5% of
# the original image.
if pred_df is not None:
xmin, ymin, xmax, ymax = [table_.lookup(file_name) for table_ in pred_df]
#xmin, ymin, xmax, ymax = [tf.to_float(b) for b in bbox_cord]
#xmin = tf.Print(xmin, [file_name, xmin, ymin, xmax, ymax], summarize=500)
height, width, channals = tf.unstack(shape, axis=0)
xmin, ymin, xmax, ymax = xmin - 100, ymin - 80, xmax + 100, ymax + 80
xmin, ymin, xmax, ymax = tf.clip_by_value(xmin, 0, width[0]-1), tf.clip_by_value(ymin, 0, height[0]-1), \
tf.clip_by_value(xmax, 0, width[0]-1), tf.clip_by_value(ymax, 0, height[0]-1)
bbox_h = ymax - ymin
bbox_w = xmax - xmin
areas = bbox_h * bbox_w
offsets=tf.stack([xmin, ymin], axis=0)
crop_shape = tf.stack([bbox_h, bbox_w, channals[0]], axis=0)
ymin, xmin, bbox_h, bbox_w = tf.cast(ymin, tf.int32), tf.cast(xmin, tf.int32), tf.cast(bbox_h, tf.int32), tf.cast(bbox_w, tf.int32)
crop_image = tf.image.crop_to_bounding_box(image, ymin, xmin, bbox_h, bbox_w)
image, shape, offsets = tf.cond(areas > 0, lambda : (crop_image, crop_shape, offsets),
lambda : (image, shape, tf.constant([0, 0], tf.int64)))
offsets.set_shape([2])
shape.set_shape([3])
else:
offsets = tf.constant([0, 0], tf.int64)
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [output_height, output_width], align_corners=False)
image = tf.squeeze(image, [0])
image.set_shape([output_height, output_width, 3])
if config.DEBUG:
save_image_op = tf.py_func(_save_image,
[image],
tf.int64, stateful=True)
image = tf.Print(image, [save_image_op])
image = tf.to_float(image)
normarlized_image = _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
if data_format == 'NCHW':
normarlized_image = tf.transpose(normarlized_image, perm=(2, 0, 1))
return normarlized_image/255., shape, offsets