當前位置: 首頁>>代碼示例>>Python>>正文


Python config.DATA_PATH屬性代碼示例

本文整理匯總了Python中config.DATA_PATH屬性的典型用法代碼示例。如果您正苦於以下問題:Python config.DATA_PATH屬性的具體用法?Python config.DATA_PATH怎麽用?Python config.DATA_PATH使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在config的用法示例。


在下文中一共展示了config.DATA_PATH屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: obj_edge_vectors

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def obj_edge_vectors(names, wv_type='glove.6B', wv_dir=DATA_PATH, wv_dim=300):
    wv_dict, wv_arr, wv_size = load_word_vectors(wv_dir, wv_type, wv_dim)

    vectors = torch.Tensor(len(names), wv_dim)
    vectors.normal_(0,1)

    for i, token in enumerate(names):
        wv_index = wv_dict.get(token, None)
        if wv_index is not None:
            vectors[i] = wv_arr[wv_index]
        else:
            # Try the longest word (hopefully won't be a preposition
            lw_token = sorted(token.split(' '), key=lambda x: len(x), reverse=True)[0]
            print("{} -> {} ".format(token, lw_token))
            wv_index = wv_dict.get(lw_token, None)
            if wv_index is not None:
                vectors[i] = wv_arr[wv_index]
            else:
                print("fail on {}".format(token))

    return vectors 
開發者ID:rowanz,項目名稱:neural-motifs,代碼行數:23,代碼來源:word_vectors.py

示例2: save_x_y

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def save_x_y(fold_index, train_x, train_y):
    _get = lambda x, l: [x[i] for i in l]
    for i in range(len(fold_index)):
        print("now part %d" % (i+1))
        part_index = fold_index[i]
        Xv_train_, y_train_ = _get(train_x, part_index), _get(train_y, part_index)
        save_dir_Xv = config.DATA_PATH +  "part" + str(i+1) + "/"
        save_dir_y = config.DATA_PATH +  "part" + str(i+1) + "/"
        if (os.path.exists(save_dir_Xv) == False):
            os.makedirs(save_dir_Xv)
        if (os.path.exists(save_dir_y) == False):
            os.makedirs(save_dir_y)
        save_path_Xv  = save_dir_Xv + train_x_name
        save_path_y  = save_dir_y + train_y_name
        np.save(save_path_Xv, Xv_train_)
        np.save(save_path_y, y_train_)


# def save_test(test_x, test_y):
#     np.save("../data/test/test_x.npy", test_x)
#     np.save("../data/test/test_y.npy", test_y) 
開發者ID:shichence,項目名稱:AutoInt,代碼行數:23,代碼來源:stratifiedKfold.py

示例3: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def main():

    train_x, train_y = _load_data()
    print('loading data done!')

    folds = list(StratifiedKFold(n_splits=10, shuffle=True,
                             random_state=config.RANDOM_SEED).split(train_x, train_y))

    fold_index = []
    for i,(train_id, valid_id) in enumerate(folds):
        fold_index.append(valid_id)

    print("fold num: %d" % (len(fold_index)))

    fold_index = np.array(fold_index)
    np.save(config.DATA_PATH +  "fold_index.npy", fold_index)

    save_x_y(fold_index, train_x, train_y)
    print("save train_x_y done!")

    fold_index = np.load(config.DATA_PATH +  "fold_index.npy")
    save_i(fold_index)
    print("save index done!") 
開發者ID:shichence,項目名稱:AutoInt,代碼行數:25,代碼來源:stratifiedKfold.py

示例4: save_x_y

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def save_x_y(fold_index, train_x, train_y):
    _get = lambda x, l: [x[i] for i in l]
    for i in range(len(fold_index)):
        print("now part %d" % (i+1))
        part_index = fold_index[i]
        Xv_train_, y_train_ = _get(train_x, part_index), _get(train_y, part_index)
        save_dir_Xv = config.DATA_PATH +  "part" + str(i+1) + "/"
        save_dir_y = config.DATA_PATH +  "part" + str(i+1) + "/"
        if (os.path.exists(save_dir_Xv) == False):
            os.makedirs(save_dir_Xv)
        if (os.path.exists(save_dir_y) == False):
            os.makedirs(save_dir_y)
        save_path_Xv  = save_dir_Xv + train_x_name
        save_path_y  = save_dir_y + train_y_name
        np.save(save_path_Xv, Xv_train_)
        np.save(save_path_y, y_train_) 
開發者ID:DeepGraphLearning,項目名稱:RecommenderSystems,代碼行數:18,代碼來源:stratifiedKfold.py

示例5: save_i

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def save_i(fold_index):
    _get = lambda x, l: [x[i] for i in l]
    train_i = pd.read_csv(config.TRAIN_I,header=None,sep=' ',nrows=None, dtype=np.int32) 
    train_i = train_i.values 
    feature_size = train_i.max() + 1
    print ("feature_size = %d" % feature_size) 
    feature_size = [feature_size]
    feature_size = np.array(feature_size)
    np.save(config.DATA_PATH +  "feature_size.npy", feature_size)


    print("train_i size: %d" % len(train_i))

    
    for i in range(len(fold_index)):
        print("now part %d" % (i+1))
        part_index = fold_index[i]
        Xi_train_ = _get(train_i, part_index)
        save_path_Xi  = config.DATA_PATH +  "part" + str(i+1)+ '/train_i.npy'
        np.save(save_path_Xi, Xi_train_) 
開發者ID:DeepGraphLearning,項目名稱:RecommenderSystems,代碼行數:22,代碼來源:stratifiedKfold.py

示例6: number_gold_credit

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def number_gold_credit():
    credit = 0
    db = TinyDB(config.DATA_PATH + 'reddit_gold.json')
    data = db.all()
    db.close()

    for gold in data:

        if gold['status'] == "buy":
            # user have buy credits
            credit = credit - int(gold['quantity'])

        if gold['status'] == "refill":
            # user have buy credits
            credit = credit + int(gold['quantity'])

    return credit 
開發者ID:just-an-dev,項目名稱:sodogetip,代碼行數:19,代碼來源:reddit_gold.py

示例7: get_lines

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def get_lines():
    id2line = {}
    file_path = os.path.join(config.DATA_PATH, config.LINE_FILE)
    print(config.LINE_FILE)
    with open(file_path, 'r', errors='ignore') as f:
        # lines = f.readlines()
        # for line in lines:
        i = 0
        try:
            for line in f:
                parts = line.split(' +++$+++ ')
                if len(parts) == 5:
                    if parts[4][-1] == '\n':
                        parts[4] = parts[4][:-1]
                    id2line[parts[0]] = parts[4]
                i += 1
        except UnicodeDecodeError:
            print(i, line)
    return id2line 
開發者ID:chiphuyen,項目名稱:stanford-tensorflow-tutorials,代碼行數:21,代碼來源:data.py

示例8: index_subset

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def index_subset(subset):
        """Index a subset by looping through all of its files and recording relevant information.

        # Arguments
            subset: Name of the subset

        # Returns
            A list of dicts containing information about all the image files in a particular subset of the
            Omniglot dataset dataset
        """
        images = []
        print('Indexing {}...'.format(subset))
        # Quick first pass to find total for tqdm bar
        subset_len = 0
        for root, folders, files in os.walk(DATA_PATH + '/Omniglot/images_{}/'.format(subset)):
            subset_len += len([f for f in files if f.endswith('.png')])

        progress_bar = tqdm(total=subset_len)
        for root, folders, files in os.walk(DATA_PATH + '/Omniglot/images_{}/'.format(subset)):
            if len(files) == 0:
                continue

            alphabet = root.split('/')[-2]
            class_name = '{}.{}'.format(alphabet, root.split('/')[-1])

            for f in files:
                progress_bar.update(1)
                images.append({
                    'subset': subset,
                    'alphabet': alphabet,
                    'class_name': class_name,
                    'filepath': os.path.join(root, f)
                })

        progress_bar.close()
        return images 
開發者ID:oscarknagg,項目名稱:few-shot,代碼行數:38,代碼來源:datasets.py

示例9: scale_each_fold

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def scale_each_fold():
    for i in range(1,11):
        print('now part %d' % i)
        data = np.load(config.DATA_PATH + 'part'+str(i)+'/train_x.npy')
        part = data[:,0:13]
        for j in range(part.shape[0]):
            if j % 100000 ==0:
                print(j)
            part[j] = list(map(scale, part[j]))
        np.save(config.DATA_PATH + 'part' + str(i) + '/train_x2.npy', data) 
開發者ID:shichence,項目名稱:AutoInt,代碼行數:12,代碼來源:scale.py

示例10: save_i

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def save_i(fold_index):
    _get = lambda x, l: [x[i] for i in l]
    train_i = pd.read_csv(config.TRAIN_I,header=None,sep=' ',nrows=None, dtype=np.int32) 
    train_i = train_i.values 
    feature_size = train_i.max() + 1
    print ("feature_size = %d" % feature_size) 
    feature_size = [feature_size]
    feature_size = np.array(feature_size)
    np.save(config.DATA_PATH +  "feature_size.npy", feature_size)

    # pivot = 40000000
    
    # test_i = train_i[pivot:]
    # train_i = train_i[:pivot]

    # print("test_i size: %d" % len(test_i))
    print("train_i size: %d" % len(train_i))

    # np.save("../data/test/test_i.npy", test_i)
    
    for i in range(len(fold_index)):
        print("now part %d" % (i+1))
        part_index = fold_index[i]
        Xi_train_ = _get(train_i, part_index)
        save_path_Xi  = config.DATA_PATH +  "part" + str(i+1)+ '/train_i.npy'
        np.save(save_path_Xi, Xi_train_) 
開發者ID:shichence,項目名稱:AutoInt,代碼行數:28,代碼來源:stratifiedKfold.py

示例11: query_time_speed_test

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def query_time_speed_test():
    from tika import parser as tp
    import re
    import numpy as np

    alec_bills = [json.loads(x) for x in open("{0}/model_legislation/alec_bills.json".format(DATA_PATH))]
    test_queries = [base64.b64decode(s['source']) for s in alec_bills]
    pattern = re.compile("[0-9]\.\s.*") 
    for i,t in enumerate(test_queries):
        test_queries[i] = tp.from_buffer(t)['content']
        test_queries[i] = " ".join(re.findall(pattern,test_queries[i]))
        test_queries[i] = test_queries[i].split()
    
    test_queries = [x for x in test_queries if len(x) >= 1500]
    query_sizes =  np.arange(50,1050,50)
    ec = ElasticConnection()
    avg_times = []
    for query_size in query_sizes:
        temp_times = []
        for query in test_queries:
            query = " ".join(query[0:query_size])
            t1 = time.time()
            ec.similar_doc_query(query,num_results = 1000)
            temp_times.append(time.time()-t1)
        
        avg_times.append(np.mean(temp_times))
        print "query size {0} , avg time (s) {1}".format(query_size,np.mean(temp_times))

    for i in avg_times:
        print i 
開發者ID:dssg,項目名稱:policy_diffusion,代碼行數:32,代碼來源:database.py

示例12: parallel_requests_test

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def parallel_requests_test():
    alec_bills = [json.loads(x) for x in open("{0}/model_legislation/alec_bills.json".format(DATA_PATH))]
    test_queries = [base64.b64decode(s['source']) for s in alec_bills]
    pattern = re.compile("[0-9]\.\s.*") 
    for i,t in enumerate(test_queries):
        test_queries[i] = tp.from_buffer(t)['content']
        test_queries[i] = " ".join(re.findall(pattern,test_queries[i]))
        #test_queries[i] = test_queries[i].split()
        #test_queries[i] = " ".join(test_queries[i][0:200])
    
    test_queries = test_queries[0:100]
    ec = ElasticConnection()
    serial_time = time.time()
    for test_query in test_queries:
        ec.similar_doc_query(test_query)

    print "serial time:  ",time.time()-serial_time
    pool = Pool(processes=7)
    parallel_time = time.time()
    pool.map(parallel_query,test_queries)
    print "parallel time:  ",time.time()-parallel_time
    exit()



## main function that manages unix interface 
開發者ID:dssg,項目名稱:policy_diffusion,代碼行數:28,代碼來源:database.py

示例13: scrape_ALEC_model_legislation

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def scrape_ALEC_model_legislation():
    url = 'http://www.alec.org/model-legislation/'
    response = urllib2.urlopen(url).read()
    bs = BeautifulSoup(response, 'html5')

    # Get all links from website
    ALEClist = []
    for link in bs.find_all('a'):
        if link.has_attr('href'):
            ALEClist.append(link.attrs['href'])

    # Filter list so that we have only the ones with model-legislation
    ALEClinks = []
    i = 0
    for i in range(0, len(ALEClist)):
        if ALEClist[i][20:38] == "model-legislation/":
            ALEClinks.append(ALEClist[i])
            i = i + 1

    # To get only unique links (get rid off duplicates)
    ALEClinks = set(ALEClinks)

    # Save to json file
    with open('{0}/data/model_legislation/alec_bills.json'.format(DATA_PATH, 'w')) as f:
        for line in ALEClinks:
            source = urllib2.urlopen(line).read()
            url = line
            date = 2015
            Jsonbill = bill_source_to_json(url, source, date)
            f.write("{0}\n".format(Jsonbill))

    # Save old alec bills (from Center for the Media and Democracy) 
開發者ID:dssg,項目名稱:policy_diffusion,代碼行數:34,代碼來源:scrapers.py

示例14: sensor_index

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def sensor_index():
	with open(os.path.join(DATA_PATH, 'sensor_graph/graph_sensor_ids.txt')) as f:
		sensor_ids = f.read().strip().split(',')
	sensor_idx = {}
	for i, sensor_id in enumerate(sensor_ids):
		sensor_idx[sensor_id] = i
	return sensor_idx 
開發者ID:panzheyi,項目名稱:ST-MetaNet,代碼行數:9,代碼來源:utils.py

示例15: sensor_location

# 需要導入模塊: import config [as 別名]
# 或者: from config import DATA_PATH [as 別名]
def sensor_location():
	sensor_idx = sensor_index()
	sensor_locs = np.loadtxt(os.path.join(DATA_PATH, 'sensor_graph/graph_sensor_locations.csv'), delimiter=',', skiprows=1)

	n = len(sensor_idx)
	loc = np.zeros((n, 2))
	for i in range(n):
		id = str(int(sensor_locs[i, 1]))
		loc[sensor_idx[id], :] = sensor_locs[i, 2:4]
	return loc 
開發者ID:panzheyi,項目名稱:ST-MetaNet,代碼行數:12,代碼來源:utils.py


注:本文中的config.DATA_PATH屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。