當前位置: 首頁>>代碼示例>>Python>>正文


Python cifar10.TOWER_NAME屬性代碼示例

本文整理匯總了Python中cifar10.TOWER_NAME屬性的典型用法代碼示例。如果您正苦於以下問題:Python cifar10.TOWER_NAME屬性的具體用法?Python cifar10.TOWER_NAME怎麽用?Python cifar10.TOWER_NAME使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在cifar10的用法示例。


在下文中一共展示了cifar10.TOWER_NAME屬性的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tower_loss

# 需要導入模塊: import cifar10 [as 別名]
# 或者: from cifar10 import TOWER_NAME [as 別名]
def tower_loss(scope, images, labels):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
    images: Images. 4D tensor of shape [batch_size, height, width, 3].
    labels: Labels. 1D tensor of shape [batch_size].

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
    tf.summary.scalar(loss_name, l)

  return total_loss 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:36,代碼來源:cifar10_multi_gpu_train.py

示例2: tower_loss

# 需要導入模塊: import cifar10 [as 別名]
# 或者: from cifar10 import TOWER_NAME [as 別名]
def tower_loss(scope):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
  # Get images and labels for CIFAR-10.
  images, labels = cifar10.distorted_inputs()

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
    tf.summary.scalar(loss_name, l)

  return total_loss 
開發者ID:logicalclocks,項目名稱:hops-tensorflow,代碼行數:36,代碼來源:cifar10_multi_gpu_train.py

示例3: tower_loss

# 需要導入模塊: import cifar10 [as 別名]
# 或者: from cifar10 import TOWER_NAME [as 別名]
def tower_loss(scope):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
  # Get images and labels for CIFAR-10.
  images, labels = cifar10.distorted_inputs()

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Compute the moving average of all individual losses and the total loss.
#  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
#  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
#  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
#    loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
#    tf.scalar_summary(loss_name +' (raw)', l)
#    tf.scalar_summary(loss_name, loss_averages.average(l))

#  with tf.control_dependencies([loss_averages_op]):
#    total_loss = tf.identity(total_loss)
  return total_loss 
開發者ID:crazyyanchao,項目名稱:TensorFlow-HelloWorld,代碼行數:45,代碼來源:9_2_MultiGPU.py


注:本文中的cifar10.TOWER_NAME屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。