本文整理匯總了Python中chainer.links.LSTM屬性的典型用法代碼示例。如果您正苦於以下問題:Python links.LSTM屬性的具體用法?Python links.LSTM怎麽用?Python links.LSTM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類chainer.links
的用法示例。
在下文中一共展示了links.LSTM屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_model
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def make_model(self, env):
n_dim_obs = env.observation_space.low.size
n_dim_action = env.action_space.low.size
n_hidden_channels = 50
policy = Sequence(
L.Linear(n_dim_obs, n_hidden_channels),
F.relu,
L.Linear(n_hidden_channels, n_hidden_channels),
F.relu,
L.LSTM(n_hidden_channels, n_hidden_channels),
policies.FCGaussianPolicy(
n_input_channels=n_hidden_channels,
action_size=n_dim_action,
min_action=env.action_space.low,
max_action=env.action_space.high)
)
q_func = q_function.FCLSTMSAQFunction(
n_dim_obs=n_dim_obs,
n_dim_action=n_dim_action,
n_hidden_layers=2,
n_hidden_channels=n_hidden_channels)
return chainer.Chain(policy=policy, q_function=q_func)
示例2: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, vocab, vocab_ngram_tokens, n_units, n_units_char, dropout,
subword): # dropout ratio, zero indicates no dropout
super(RNN, self).__init__()
with self.init_scope():
self.embed = L.EmbedID(
len(vocab_ngram_tokens.lst_words) + 2, n_units_char,
initialW=I.Uniform(1. / n_units_char)) # ngram tokens embedding plus 2 for OOV and end symbol.
if 'lstm' in subword:
self.mid = L.LSTM(n_units_char, n_units_char * 2)
self.out = L.Linear(n_units_char * 2, n_units_char) # the feed-forward output layer
if 'bilstm' in subword:
self.mid_b = L.LSTM(n_units_char, n_units_char * 2)
self.out_b = L.Linear(n_units_char * 2, n_units_char)
self.n_ngram = vocab_ngram_tokens.metadata["max_gram"] - vocab_ngram_tokens.metadata["min_gram"] + 1
self.final_out = L.Linear(n_units * (self.n_ngram), n_units)
self.dropout = dropout
self.vocab = vocab
self.vocab_ngram_tokens = vocab_ngram_tokens
self.subword = subword
示例3: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, vocab_size, hidden_size, dropout_ratio, ignore_label):
super(LSTMLanguageModel, self).__init__()
with self.init_scope():
self.embed_word = L.EmbedID(
vocab_size,
hidden_size,
initialW=initializers.Normal(1.0),
ignore_label=ignore_label
)
self.embed_img = L.Linear(
hidden_size,
initialW=initializers.Normal(0.01)
)
self.lstm = L.LSTM(hidden_size, hidden_size)
self.out_word = L.Linear(
hidden_size,
vocab_size,
initialW=initializers.Normal(0.01)
)
self.dropout_ratio = dropout_ratio
示例4: step
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def step(self, hx, cx, xs):
"""Batch of word tokens to word tokens and hidden LSTM states.
Predict the next set of tokens given previous tokens.
"""
# Concatenate all input captions and pass them through the model in a
# single pass
caption_lens = [len(x) for x in xs]
caption_sections = np.cumsum(caption_lens[:-1])
xs = F.concat(xs, axis=0)
xs = self.embed_word(xs)
xs = F.split_axis(xs, caption_sections, axis=0)
hx, cx, ys = self.lstm(hx, cx, xs)
ys = F.concat(ys, axis=0)
ys = F.dropout(ys, self.dropout_ratio)
ys = self.decode_caption(ys)
return hx, cx, ys
示例5: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, target_shape, num_labels, num_timesteps, uses_original_data=False, dropout_ratio=0.5, use_dropout=False):
super(FSNSRecognitionNet, self).__init__()
with self.init_scope():
self.conv0 = L.Convolution2D(None, 32, 3, pad=1, stride=2)
self.bn0 = L.BatchNormalization(32)
self.conv1 = L.Convolution2D(32, 32, 3, pad=1)
self.bn1 = L.BatchNormalization(32)
self.rs1 = ResnetBlock(32, use_dropout=use_dropout, dropout_ratio=dropout_ratio)
self.rs2 = ResnetBlock(64, filter_increase=True, use_dropout=use_dropout, dropout_ratio=dropout_ratio)
self.rs3 = ResnetBlock(128, filter_increase=True, use_dropout=use_dropout, dropout_ratio=dropout_ratio)
self.fc1 = L.Linear(None, 256)
self.lstm = L.LSTM(None, 256)
self.classifier = L.Linear(None, 134)
self._train = True
self.target_shape = target_shape
self.num_labels = num_labels
self.num_timesteps = num_timesteps
self.uses_original_data = uses_original_data
self.vis_anchor = None
self.use_dropout = use_dropout
self.dropout_ratio = dropout_ratio
示例6: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, target_shape, num_labels, num_timesteps, uses_original_data=False, dropout_ratio=0.5, use_dropout=False, use_blstm=False, use_attention=False):
super().__init__()
with self.init_scope():
self.resnet = FSNSResNetLayers('', 152)
self.fc1 = L.Linear(None, 512)
self.lstm = L.LSTM(None, 512)
if use_blstm:
self.blstm = L.LSTM(None, 512)
self.classifier = L.Linear(None, 134)
self.target_shape = target_shape
self.num_labels = num_labels
self.num_timesteps = num_timesteps
self.uses_original_data = uses_original_data
self.vis_anchor = None
self.use_dropout = use_dropout
self.dropout_ratio = dropout_ratio
self.use_blstm = use_blstm
self.use_attention = use_attention
示例7: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, dropout_ratio, num_timesteps, zoom=0.9):
super(SVHNLocalizationNet, self).__init__()
with self.init_scope():
self.conv0 = L.Convolution2D(None, 32, 3, pad=1)
self.bn0 = L.BatchNormalization(32)
self.rs1 = ResnetBlock(32)
self.rs2 = ResnetBlock(48, filter_increase=True)
self.rs3 = ResnetBlock(48)
self.lstm = L.LSTM(None, 256)
self.transform_2 = L.Linear(256, 6)
# initialize transform
self.transform_2.W.data[...] = 0
transform_bias = self.transform_2.b.data
transform_bias[[0, 4]] = zoom
transform_bias[[2, 5]] = 0
self.dropout_ratio = dropout_ratio
self._train = True
self.num_timesteps = num_timesteps
self.vis_anchor = None
self.width_encoding = None
self.height_encoding = None
示例8: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, n_horses, n_jockeys):
n_units_h, n_units_v, n_units_j, n_units_r, n_units_d = nn_nodes
super(Turf_Tipster_NN, self).__init__()
with self.init_scope():
# 馬モデルのステータス(モデルを保存できるようにParameterで保持しておく)
self.vc = chainer.Parameter(np.zeros((n_horses, n_units_v), dtype=np.float32))
self.vh = chainer.Parameter(np.zeros((n_horses, n_units_v), dtype=np.float32))
# 馬モデルのレイヤー
self.le = L.EmbedID(n_horses, n_horses)
self.l1 = L.Linear(n_horses, n_units_h)
self.l2 = L.LSTM(n_units_h, n_units_v)
# 騎手モデルのレイヤー
self.re = L.EmbedID(n_jockeys, n_jockeys)
self.r1 = L.Linear(n_jockeys, n_units_j)
# レースモデルのレイヤー
self.m1 = L.EmbedID(11, 11)
self.m2 = L.EmbedID(8, 8)
self.m3 = L.EmbedID(4, 4)
self.m4 = L.EmbedID(4, 4)
self.j1 = L.Linear(n_units_v + n_units_j + 11 + 8 + 4 + 4, n_units_r)
self.j2 = L.Linear(n_units_r, n_units_r)
self.j3 = L.Linear(n_units_r, n_units_d)
# 引數は(レースメタ情報, グリッド情報)で著順になっている
示例9: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, n_actions):
self.head = links.NIPSDQNHead()
self.pi = policy.FCSoftmaxPolicy(
self.head.n_output_channels, n_actions)
self.v = v_function.FCVFunction(self.head.n_output_channels)
self.lstm = L.LSTM(self.head.n_output_channels,
self.head.n_output_channels)
super().__init__(self.head, self.lstm, self.pi, self.v)
示例10: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, obs_size, action_size, hidden_size=200, lstm_size=128):
self.pi_head = L.Linear(obs_size, hidden_size)
self.v_head = L.Linear(obs_size, hidden_size)
self.pi_lstm = L.LSTM(hidden_size, lstm_size)
self.v_lstm = L.LSTM(hidden_size, lstm_size)
self.pi = policies.FCGaussianPolicy(lstm_size, action_size)
self.v = v_function.FCVFunction(lstm_size)
super().__init__(self.pi_head, self.v_head,
self.pi_lstm, self.v_lstm, self.pi, self.v)
示例11: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers, nonlinearity=F.relu, last_wscale=1.):
self.n_input_channels = n_dim_obs + n_dim_action
self.n_hidden_layers = n_hidden_layers
self.n_hidden_channels = n_hidden_channels
self.nonlinearity = nonlinearity
super().__init__()
with self.init_scope():
self.fc = MLP(self.n_input_channels, n_hidden_channels,
[self.n_hidden_channels] * self.n_hidden_layers,
nonlinearity=nonlinearity,
)
self.lstm = L.LSTM(n_hidden_channels, n_hidden_channels)
self.out = L.Linear(n_hidden_channels, 1,
initialW=LeCunNormal(last_wscale))
示例12: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers):
self.n_input_channels = n_dim_obs
self.n_hidden_layers = n_hidden_layers
self.n_hidden_channels = n_hidden_channels
self.state_stack = []
super().__init__()
with self.init_scope():
self.fc = MLP(in_size=self.n_input_channels,
out_size=n_hidden_channels,
hidden_sizes=[self.n_hidden_channels] *
self.n_hidden_layers)
self.lstm = L.LSTM(n_hidden_channels, n_hidden_channels)
self.out = L.Linear(n_hidden_channels, n_dim_action)
示例13: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, vocab_size, embed_size, hidden_size, output_size):
super(RNNModel, self).__init__()
with self.init_scope():
self.embed = L.EmbedID(vocab_size, embed_size)
self.rnn = L.LSTM(embed_size, hidden_size)
self.linear = L.Linear(hidden_size, output_size)
示例14: parse_args
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', '-b', type=int, default=32,
help='Number of examples in each mini-batch')
parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '
'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=0,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',
help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--hidden_size', type=int, default=300,
help='Number of LSTM units in each layer')
parser.add_argument('--embed_size', type=int, default=300,
help='Size of embeddings')
parser.add_argument('--model', '-m', default='model.npz',
help='Model file name to serialize')
parser.add_argument('--glove', default='data/glove.6B.300d.txt',
help='Path to glove embedding file.')
args = parser.parse_args()
return args
示例15: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import LSTM [as 別名]
def __init__(self, n_actions):
self.head = dqn_head.NIPSDQNHead()
self.pi = policy.FCSoftmaxPolicy(
self.head.n_output_channels, n_actions)
self.v = v_function.FCVFunction(self.head.n_output_channels)
self.lstm = L.LSTM(self.head.n_output_channels,
self.head.n_output_channels)
super().__init__(self.head, self.lstm, self.pi, self.v)
init_like_torch(self)