當前位置: 首頁>>代碼示例>>Python>>正文


Python caffe2_pb2.CPU屬性代碼示例

本文整理匯總了Python中caffe2.proto.caffe2_pb2.CPU屬性的典型用法代碼示例。如果您正苦於以下問題:Python caffe2_pb2.CPU屬性的具體用法?Python caffe2_pb2.CPU怎麽用?Python caffe2_pb2.CPU使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在caffe2.proto.caffe2_pb2的用法示例。


在下文中一共展示了caffe2_pb2.CPU屬性的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _tf_device

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def _tf_device(device_option):
    '''
    Handle the devices.

    Args:
        device_option (caffe2_pb2.DeviceOption): DeviceOption protobuf,
            associated to an operator, that contains information such as
            device_type (optional), cuda_gpu_id (optional), node_name (optional,
            tells which node the operator should execute on). See caffe2.proto
            in caffe2/proto for the full list.

    Returns:
        Formatted string representing device information contained in
            device_option.
    '''
    if not device_option.HasField("device_type"):
        return ""
    if device_option.device_type == caffe2_pb2.CPU or device_option.device_type == caffe2_pb2.MKLDNN:
        return "/cpu:*"
    if device_option.device_type == caffe2_pb2.CUDA:
        return "/gpu:{}".format(device_option.device_id)
    raise Exception("Unhandled device", device_option) 
開發者ID:lanpa,項目名稱:tensorboardX,代碼行數:24,代碼來源:caffe2_graph.py

示例2: UpdateDeviceOption

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def UpdateDeviceOption(dev_opt, net_def):
    """update device options in net_def"""
    # net_def.device_option.CopyFrom(dev_opt)
    # gpufallbackop=['GenerateProposals', 'BoxWithNMSLimit', 'BBoxTransform',
    #     'PackedInt8BGRANHWCToNCHWCStylizerPreprocess', 'BRGNCHWCToPackedInt8BGRAStylizerDeprocess']
    gpufallbackop = ['GenerateProposals', 'BoxWithNMSLimit', 'BBoxTransform']
    # gpufallbackop=[]
    ideepfallbackop = []
    from caffe2.proto import caffe2_pb2
    for eop in net_def.op:
        if (eop.type in gpufallbackop and dev_opt.device_type == caffe2_pb2.CUDA) or (
                eop.type in ideepfallbackop and dev_opt.device_type == caffe2_pb2.IDEEP):
            eop.device_option.device_type = caffe2_pb2.CPU
        elif (
                eop.device_option and
                eop.device_option.device_type != dev_opt.device_type
        ):
            eop.device_option.device_type = dev_opt.device_type 
開發者ID:intel,項目名稱:optimized-models,代碼行數:20,代碼來源:common_caffe2.py

示例3: get_device_option

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def get_device_option(gpu=None):
        """Constructs `core.DeviceOption` object

        :param int gpu: Identifier of GPU to use or None for CPU.
        :return: Instance of `core.DeviceOption`.
        """
        dev_opt = None
        if gpu is None:
            dev_opt = core.DeviceOption(caffe2_pb2.CPU)
        else:
            assert workspace.has_gpu_support, "Workspace does not support GPUs"
            assert gpu >= 0 and gpu < workspace.NumCudaDevices(),\
                   "Workspace does not provide this gpu (%d). "\
                   "Number of GPUs is %d" % (gpu, workspace.NumCudaDevices())
            dev_opt = core.DeviceOption(caffe2_pb2.CUDA, gpu)
        return dev_opt 
開發者ID:HewlettPackard,項目名稱:dlcookbook-dlbs,代碼行數:18,代碼來源:model.py

示例4: CpuScope

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def CpuScope():
    """Create a CPU device scope."""
    cpu_dev = core.DeviceOption(caffe2_pb2.CPU)
    with core.DeviceScope(cpu_dev):
        yield 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:7,代碼來源:c2.py

示例5: get_device_option_cpu

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def get_device_option_cpu():
    device_option = core.DeviceOption(caffe2_pb2.CPU)
    return device_option 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:5,代碼來源:model_convert_utils.py

示例6: Caffe2ToOnnx

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def Caffe2ToOnnx(init_def, predict_def, data_shape):
    """transfer caffe2 to onnx"""
    from caffe2.proto import caffe2_pb2
    from caffe2.python.onnx import frontend
    from caffe2.python import workspace

    old_ws_name = workspace.CurrentWorkspace()
    workspace.SwitchWorkspace("_onnx_porting_", True)

    data_type = onnx.TensorProto.FLOAT
    value_info = {
        str(predict_def.op[0].input[0]) : (data_type, data_shape)
    }

    device_opts_cpu = caffe2_pb2.DeviceOption()
    device_opts_cpu.device_type = caffe2_pb2.CPU
    UpdateDeviceOption(device_opts_cpu, init_def)
    UpdateDeviceOption(device_opts_cpu, predict_def)

    onnx_model = frontend.caffe2_net_to_onnx_model(
        predict_def,
        init_def,
        value_info
    )

    onnx.checker.check_model(onnx_model)
    workspace.SwitchWorkspace(old_ws_name)
    return onnx_model 
開發者ID:intel,項目名稱:optimized-models,代碼行數:30,代碼來源:common_caffe2.py

示例7: _get_device

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def _get_device(device_option: d5.DeviceType) -> core.DeviceOption:
    device = core.DeviceOption(caffe2_pb2.CPU)
    if device_option.is_gpu():
        device = core.DeviceOption(caffe2_pb2.CUDA)
    return device 
開發者ID:deep500,項目名稱:deep500,代碼行數:7,代碼來源:__init__.py

示例8: build_consistent_parameter_server_gradients

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def build_consistent_parameter_server_gradients(self, network: Caffe2Network, comm_network: CommunicationNetwork):
        _load_custom_dll()

        gradients = network.gradient()

        ptr = comm_network.get_comm_numpy_ptr()
        network.feed_tensor("mpi_comm", ptr, device_option=core.DeviceOption(caffe2_pb2.CPU))

        # Copy GPU data to CPU
        if network.is_cuda:
            for (param_name, grad_name) in gradients:
                grad_name_from = grad_name + "_cpu" if network.is_cuda else grad_name
                with core.DeviceScope(network.device_option):
                    # we copy on the same device on where mpi_comm is
                    network.train_model.EnsureCPUOutput([grad_name], grad_name_from)

        # Invoke MPI
        for (param_name, grad_name) in gradients:
            grad_name_from = grad_name + "_cpu" if network.is_cuda else grad_name
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                # we use the copied tensor as input
                network.train_model.DMpiReduceMean([grad_name_from, "mpi_comm"], grad_name + "_buffer")
                network.train_model.DMpiBroadcast([grad_name + "_buffer", "mpi_comm"], grad_name_from)

        # We have to copy back the communicated tensor if we are on the GPU
        if network.is_cuda:
            for (param_name, grad_name) in gradients:
                with core.DeviceScope(network.device_option):
                    # we copy on the same device on where mpi_comm is
                    network.train_model.CopyFromCPUInput([grad_name + "_cpu"], grad_name) 
開發者ID:deep500,項目名稱:deep500,代碼行數:32,代碼來源:caffe2_distributed_optimizer.py

示例9: build_allreduce_gradients

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def build_allreduce_gradients(self, network: Caffe2Network, comm_network: CommunicationNetwork):
        _load_custom_dll()

        gradients = network.gradient()

        ptr = comm_network.get_comm_numpy_ptr()
        network.feed_tensor("mpi_comm", ptr, device_option=core.DeviceOption(caffe2_pb2.CPU))

        # Copy GPU data to CPU
        if network.is_cuda:
            for (param_name, grad_name) in gradients:
                with core.DeviceScope(self.network.device_option):
                    # we copy on the same device on where mpi_comm is
                    network.train_model.EnsureCPUOutput([grad_name], grad_name + "_cpu")

        # Invoke MPI
        for (param_name, grad_name) in gradients:
            grad_name_from = grad_name + "_cpu" if network.is_cuda else grad_name
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                # we use the copied tensor as input
                network.train_model.DMpiAllReduceMean([grad_name_from, "mpi_comm"], grad_name_from)

        # We have to copy back the communicated tensor if we are on the GPU
        if network.is_cuda:
            for (param_name, grad_name) in gradients:
                with core.DeviceScope(self.network.device_option):
                    # we copy on the same device on where mpi_comm is
                    network.train_model.CopyFromCPUInput([grad_name + "_cpu"], grad_name) 
開發者ID:deep500,項目名稱:deep500,代碼行數:30,代碼來源:caffe2_distributed_optimizer.py

示例10: build_allreduce_neighbors_gradients

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def build_allreduce_neighbors_gradients(self, network: Caffe2Network, comm_network: CommunicationNetwork):
        _load_custom_dll()

        gradients = network.gradient()

        ptr = comm_network.get_comm_neighbor_numpy_ptr()
        network.feed_tensor("mpi_comm", ptr, device_option=core.DeviceOption(caffe2_pb2.CPU))

        # Copy GPU data to CPU
        if network.is_cuda:
            for (param_name, grad_name) in gradients:
                with core.DeviceScope(self.network.device_option):
                    # we copy on the same device on where mpi_comm is
                    network.train_model.EnsureCPUOutput([grad_name], grad_name + "_cpu")

        # Invoke MPI
        for (param_name, grad_name) in gradients:
            grad_name_from = grad_name + "_cpu" if network.is_cuda else grad_name
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                # we use the copied tensor as input
                network.train_model.DMpiAllReduceMean([grad_name_from, "mpi_comm"], grad_name_from)

        # We have to copy back the communicated tensor if we are on the GPU
        if network.is_cuda:
            for (param_name, grad_name) in gradients:
                with core.DeviceScope(self.network.device_option):
                    # we copy on the same device on where mpi_comm is
                    network.train_model.CopyFromCPUInput([grad_name + "_cpu"], grad_name) 
開發者ID:deep500,項目名稱:deep500,代碼行數:30,代碼來源:caffe2_distributed_optimizer.py

示例11: _tf_device

# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import CPU [as 別名]
def _tf_device(device_option):
    '''Handle the devices.'''
    if not device_option.HasField("device_type"):
        return ""
    if device_option.device_type == caffe2_pb2.CPU:
        return "/cpu:*"
    if device_option.device_type == caffe2_pb2.CUDA:
        return "/gpu:{}".format(device_option.cuda_gpu_id)
    raise Exception("Un-handled device", device_option) 
開發者ID:endernewton,項目名稱:c2board,代碼行數:11,代碼來源:graph.py


注:本文中的caffe2.proto.caffe2_pb2.CPU屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。