當前位置: 首頁>>代碼示例>>Python>>正文


Python logging.INFO屬性代碼示例

本文整理匯總了Python中absl.logging.INFO屬性的典型用法代碼示例。如果您正苦於以下問題:Python logging.INFO屬性的具體用法?Python logging.INFO怎麽用?Python logging.INFO使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在absl.logging的用法示例。


在下文中一共展示了logging.INFO屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _log_level

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def _log_level():
    """Parser to set logging level and acquire software version/commit"""

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=False)

    #parser.add_argument('--version', action='version', version=get_version())

    modify_log_level = parser.add_mutually_exclusive_group()
    modify_log_level.add_argument('--debug', action='store_const',
        dest='log_level', const=logging.DEBUG, default=logging.INFO,
        help='Verbose logging of debug information.')
    modify_log_level.add_argument('--quiet', action='store_const',
        dest='log_level', const=logging.WARNING, default=logging.INFO,
        help='Minimal logging; warnings only).')

    return parser 
開發者ID:nanoporetech,項目名稱:medaka,代碼行數:19,代碼來源:medaka.py

示例2: set_stderrthreshold

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def set_stderrthreshold(s):
  """Sets the stderr threshold to the value passed in.

  Args:
    s: str|int, valid strings values are case-insensitive 'debug',
        'info', 'warning', 'error', and 'fatal'; valid integer values are
        logging.DEBUG|INFO|WARNING|ERROR|FATAL.

  Raises:
      ValueError: Raised when s is an invalid value.
  """
  if s in converter.ABSL_LEVELS:
    FLAGS.stderrthreshold = converter.ABSL_LEVELS[s]
  elif isinstance(s, str) and s.upper() in converter.ABSL_NAMES:
    FLAGS.stderrthreshold = s
  else:
    raise ValueError(
        'set_stderrthreshold only accepts integer absl logging level '
        'from -3 to 1, or case-insensitive string values '
        "'debug', 'info', 'warning', 'error', and 'fatal'. "
        'But found "{}" ({}).'.format(s, type(s))) 
開發者ID:abseil,項目名稱:abseil-py,代碼行數:23,代碼來源:__init__.py

示例3: get_log_file_name

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def get_log_file_name(level=INFO):
  """Returns the name of the log file.

  For Python logging, only one file is used and level is ignored. And it returns
  empty string if it logs to stderr/stdout or the log stream has no `name`
  attribute.

  Args:
    level: int, the absl.logging level.

  Raises:
    ValueError: Raised when `level` has an invalid value.
  """
  if level not in converter.ABSL_LEVELS:
    raise ValueError('Invalid absl.logging level {}'.format(level))
  stream = get_absl_handler().python_handler.stream
  if (stream == sys.stderr or stream == sys.stdout or
      not hasattr(stream, 'name')):
    return ''
  else:
    return stream.name 
開發者ID:abseil,項目名稱:abseil-py,代碼行數:23,代碼來源:__init__.py

示例4: test_bad_exc_info_py_logging

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def test_bad_exc_info_py_logging(self):

    def assert_stderr(stderr):
      # The exact message differs among different Python versions. So it just
      # asserts some certain information is there.
      self.assertIn('Traceback (most recent call last):', stderr)
      self.assertIn('IndexError', stderr)

    expected_logs = [
        ['stderr', None, assert_stderr],
        ['absl_log_file', 'INFO', '']]

    self._exec_test(
        _verify_ok,
        expected_logs,
        test_name='bad_exc_info',
        use_absl_log_file=True) 
開發者ID:abseil,項目名稱:abseil-py,代碼行數:19,代碼來源:logging_functional_test.py

示例5: test_start_logging_to_file

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def test_start_logging_to_file(
      self, mock_getpid, mock_unlink, mock_islink, mock_time,
      mock_localtime, mock_find_log_dir_and_names):
    mock_find_log_dir_and_names.return_value = ('here', 'prog1', 'prog1')
    mock_time.return_value = '12345'
    mock_localtime.return_value = self.now_tuple
    mock_getpid.return_value = 4321
    symlink = os.path.join('here', 'prog1.INFO')
    mock_islink.return_value = True
    with mock.patch.object(
        logging, 'open', return_value=sys.stdout, create=True):
      if getattr(os, 'symlink', None):
        with mock.patch.object(os, 'symlink'):
          self.python_handler.start_logging_to_file()
          mock_unlink.assert_called_once_with(symlink)
          os.symlink.assert_called_once_with(
              'prog1.INFO.19791021-181716.4321', symlink)
      else:
        self.python_handler.start_logging_to_file() 
開發者ID:abseil,項目名稱:abseil-py,代碼行數:21,代碼來源:logging_test.py

示例6: test_absl_to_standard

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def test_absl_to_standard(self):
    self.assertEqual(
        logging.DEBUG, converter.absl_to_standard(absl_logging.DEBUG))
    self.assertEqual(
        logging.INFO, converter.absl_to_standard(absl_logging.INFO))
    self.assertEqual(
        logging.WARNING, converter.absl_to_standard(absl_logging.WARN))
    self.assertEqual(
        logging.WARN, converter.absl_to_standard(absl_logging.WARN))
    self.assertEqual(
        logging.ERROR, converter.absl_to_standard(absl_logging.ERROR))
    self.assertEqual(
        logging.FATAL, converter.absl_to_standard(absl_logging.FATAL))
    self.assertEqual(
        logging.CRITICAL, converter.absl_to_standard(absl_logging.FATAL))
    # vlog levels.
    self.assertEqual(9, converter.absl_to_standard(2))
    self.assertEqual(8, converter.absl_to_standard(3))

    with self.assertRaises(TypeError):
      converter.absl_to_standard('') 
開發者ID:abseil,項目名稱:abseil-py,代碼行數:23,代碼來源:converter_test.py

示例7: test_standard_to_absl

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def test_standard_to_absl(self):
    self.assertEqual(
        absl_logging.DEBUG, converter.standard_to_absl(logging.DEBUG))
    self.assertEqual(
        absl_logging.INFO, converter.standard_to_absl(logging.INFO))
    self.assertEqual(
        absl_logging.WARN, converter.standard_to_absl(logging.WARN))
    self.assertEqual(
        absl_logging.WARN, converter.standard_to_absl(logging.WARNING))
    self.assertEqual(
        absl_logging.ERROR, converter.standard_to_absl(logging.ERROR))
    self.assertEqual(
        absl_logging.FATAL, converter.standard_to_absl(logging.FATAL))
    self.assertEqual(
        absl_logging.FATAL, converter.standard_to_absl(logging.CRITICAL))
    # vlog levels.
    self.assertEqual(2, converter.standard_to_absl(logging.DEBUG - 1))
    self.assertEqual(3, converter.standard_to_absl(logging.DEBUG - 2))

    with self.assertRaises(TypeError):
      converter.standard_to_absl('') 
開發者ID:abseil,項目名稱:abseil-py,代碼行數:23,代碼來源:converter_test.py

示例8: logging_level_verbosity

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def logging_level_verbosity(logging_verbosity):
  """Converts logging_level into TensorFlow logging verbosity value.

  Args:
    logging_verbosity: String value representing logging level: 'DEBUG', 'INFO',
    'WARN', 'ERROR', 'FATAL'
  """
  name_to_level = {
      'FATAL': logging.FATAL,
      'ERROR': logging.ERROR,
      'WARN': logging.WARN,
      'INFO': logging.INFO,
      'DEBUG': logging.DEBUG
  }

  try:
    return name_to_level[logging_verbosity]
  except Exception as e:
    raise RuntimeError('Not supported logs verbosity (%s). Use one of %s.' %
                       (str(e), list(name_to_level))) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:22,代碼來源:retrain.py

示例9: create_logger

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def create_logger(self, log_path=None):
        if log_path is None:
            return None
        check_and_create_dir(log_path)
        handler = logging.handlers.RotatingFileHandler(log_path, mode="a", maxBytes=100000000, backupCount=200)
        logging.root.removeHandler(absl.logging._absl_handler) # this removes duplicated logging
        absl.logging._warn_preinit_stderr = False # this removes duplicated logging
        formatter = RequestFormatter("[%(asctime)s] %(levelname)s: %(message)s")
        handler.setFormatter(formatter)
        logger = logging.getLogger(log_path)
        logger.setLevel(logging.INFO)
        for hdlr in logger.handlers[:]:
            logger.removeHandler(hdlr) # remove old handlers
        logger.addHandler(handler)
        self.logger = logger 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:17,代碼來源:base_learner.py

示例10: gym_env_wrapper

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def gym_env_wrapper(env, rl_env_max_episode_steps, maxskip_env, rendered_env,
                    rendered_env_resize_to, sticky_actions, output_dtype,
                    num_actions):
  """Wraps a gym environment. see make_gym_env for details."""
  # rl_env_max_episode_steps is None or int.
  assert ((not rl_env_max_episode_steps) or
          isinstance(rl_env_max_episode_steps, int))

  wrap_with_time_limit = ((not rl_env_max_episode_steps) or
                          rl_env_max_episode_steps >= 0)

  if wrap_with_time_limit:
    env = remove_time_limit_wrapper(env)

  if num_actions is not None:
    logging.log_first_n(
        logging.INFO, "Number of discretized actions: %d", 1, num_actions)
    env = ActionDiscretizeWrapper(env, num_actions=num_actions)

  if sticky_actions:
    env = StickyActionEnv(env)

  if maxskip_env:
    env = MaxAndSkipEnv(env)  # pylint: disable=redefined-variable-type

  if rendered_env:
    env = RenderedEnv(
        env, resize_to=rendered_env_resize_to, output_dtype=output_dtype)

  if wrap_with_time_limit and rl_env_max_episode_steps is not None:
    env = gym.wrappers.TimeLimit(
        env, max_episode_steps=rl_env_max_episode_steps)
  return env 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:35,代碼來源:gym_utils.py

示例11: get_logger

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def get_logger(name, level=logging.INFO, with_tqdm=True):
    if with_tqdm:
        handler = TQDMHandler()
    else:
        handler = logging.StreamHandler(stream=sys.stderr)
    formatter = logging.Formatter(
        fmt="%(asctime)s: %(module)s.%(funcName)s +%(lineno)s: %(levelname)-8s %(message)s",
        datefmt="%H:%M:%S"
    )
    handler.setFormatter(formatter)

    logger = logging.getLogger(name)
    logger.setLevel(level)
    logger.addHandler(handler)
    return logger 
開發者ID:undeadpixel,項目名稱:reinvent-randomized,代碼行數:17,代碼來源:log.py

示例12: main

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')
  flags.mark_flag_as_required('input_file')
  flags.mark_flag_as_required('input_format')
  flags.mark_flag_as_required('output_file')
  flags.mark_flag_as_required('label_map_file')
  flags.mark_flag_as_required('vocab_file')
  flags.mark_flag_as_required('saved_model')

  label_map = utils.read_label_map(FLAGS.label_map_file)
  converter = tagging_converter.TaggingConverter(
      tagging_converter.get_phrase_vocabulary_from_label_map(label_map),
      FLAGS.enable_swap_tag)
  builder = bert_example.BertExampleBuilder(label_map, FLAGS.vocab_file,
                                            FLAGS.max_seq_length,
                                            FLAGS.do_lower_case, converter)
  predictor = predict_utils.LaserTaggerPredictor(
      tf.contrib.predictor.from_saved_model(FLAGS.saved_model), builder,
      label_map)

  num_predicted = 0
  with tf.gfile.Open(FLAGS.output_file, 'w') as writer:
    for i, (sources, target) in enumerate(utils.yield_sources_and_targets(
        FLAGS.input_file, FLAGS.input_format)):
      logging.log_every_n(
          logging.INFO,
          f'{i} examples processed, {num_predicted} converted to tf.Example.',
          100)
      prediction = predictor.predict(sources)
      writer.write(f'{" ".join(sources)}\t{prediction}\t{target}\n')
      num_predicted += 1
  logging.info(f'{num_predicted} predictions saved to:\n{FLAGS.output_file}') 
開發者ID:google-research,項目名稱:lasertagger,代碼行數:35,代碼來源:predict_main.py

示例13: main

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')
  flags.mark_flag_as_required('input_file')
  flags.mark_flag_as_required('input_format')
  flags.mark_flag_as_required('output_tfrecord')
  flags.mark_flag_as_required('label_map_file')
  flags.mark_flag_as_required('vocab_file')

  label_map = utils.read_label_map(FLAGS.label_map_file)
  converter = tagging_converter.TaggingConverter(
      tagging_converter.get_phrase_vocabulary_from_label_map(label_map),
      FLAGS.enable_swap_tag)
  builder = bert_example.BertExampleBuilder(label_map, FLAGS.vocab_file,
                                            FLAGS.max_seq_length,
                                            FLAGS.do_lower_case, converter)

  num_converted = 0
  with tf.io.TFRecordWriter(FLAGS.output_tfrecord) as writer:
    for i, (sources, target) in enumerate(utils.yield_sources_and_targets(
        FLAGS.input_file, FLAGS.input_format)):
      logging.log_every_n(
          logging.INFO,
          f'{i} examples processed, {num_converted} converted to tf.Example.',
          10000)
      example = builder.build_bert_example(
          sources, target,
          FLAGS.output_arbitrary_targets_for_infeasible_examples)
      if example is None:
        continue
      writer.write(example.to_tf_example().SerializeToString())
      num_converted += 1
  logging.info(f'Done. {num_converted} examples converted to tf.Example.')
  count_fname = _write_example_count(num_converted)
  logging.info(f'Wrote:\n{FLAGS.output_tfrecord}\n{count_fname}') 
開發者ID:google-research,項目名稱:lasertagger,代碼行數:37,代碼來源:preprocess_main.py

示例14: set_tf_log_level

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def set_tf_log_level(ll):
    # 0     | DEBUG            | [Default] Print all messages
    # 1     | INFO             | Filter out INFO messages
    # 2     | WARNING          | Filter out INFO & WARNING messages
    # 3     | ERROR            | Filter out all messages
    import os

    TF_VERSION = get_version(tf)
    if TF_VERSION < 2:
        import tensorflow.compat.v1.logging as tf_logging
    else:
        from absl import logging as tf_logging
    tf_ll = tf_logging.WARN
    tf_cpp_ll = 1
    ll = ll.lower()
    if ll == "debug":
        tf_ll = tf_logging.DEBUG
        tf_cpp_ll = 0
    if ll == "info":
        tf_cpp_ll = 0
        tf_ll = tf_logging.INFO
    if ll == "error":
        tf_ll = tf_logging.ERROR
        tf_cpp_ll = 2
    tf_logging.set_verbosity(tf_ll)
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = f"{tf_cpp_ll}" 
開發者ID:dpressel,項目名稱:mead-baseline,代碼行數:28,代碼來源:layers.py

示例15: log_metrics

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import INFO [as 別名]
def log_metrics(model_desc, eval_metrics):
  """Logs evaluation metrics at `logging.INFO` level.

  Args:
    model_desc: A description of the model.
    eval_metrics: A dictionary mapping metric names to corresponding values. It
      must contain the loss and accuracy metrics.
  """
  logging.info('\n')
  logging.info('Eval accuracy for %s: %s', model_desc, eval_metrics['accuracy'])
  logging.info('Eval loss for %s: %s', model_desc, eval_metrics['loss'])
  if 'graph_loss' in eval_metrics:
    logging.info('Eval graph loss for %s: %s', model_desc,
                 eval_metrics['graph_loss']) 
開發者ID:tensorflow,項目名稱:neural-structured-learning,代碼行數:16,代碼來源:graph_keras_mlp_cora.py


注:本文中的absl.logging.INFO屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。