本文整理匯總了Python中PIL.Image.FLIP_LEFT_RIGHT屬性的典型用法代碼示例。如果您正苦於以下問題:Python Image.FLIP_LEFT_RIGHT屬性的具體用法?Python Image.FLIP_LEFT_RIGHT怎麽用?Python Image.FLIP_LEFT_RIGHT使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類PIL.Image
的用法示例。
在下文中一共展示了Image.FLIP_LEFT_RIGHT屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: flip_and_save
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def flip_and_save(self, image_path):
"""
flip the image by the path and save the flipped image with suffix 'flip'
:param path: the path of specific image
:return: the path of saved image
"""
[image_name, image_ext] = os.path.splitext(os.path.basename(image_path))
image_dir = os.path.dirname(image_path)
saved_image_path = os.path.join(image_dir, image_name + '_flip' + image_ext)
try:
flipped_image = Image.open(saved_image_path)
except:
flipped_image = Image.open(image_path)
flipped_image = flipped_image.transpose(Image.FLIP_LEFT_RIGHT)
flipped_image.save(saved_image_path, 'png')
return saved_image_path
示例2: flip_and_save_func
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def flip_and_save_func(image_path):
"""
flip the image by the path and save the flipped image with suffix 'flip'
:param path: the path of specific image
:return: the path of saved image
"""
[image_name, image_ext] = os.path.splitext(os.path.basename(image_path))
image_dir = os.path.dirname(image_path)
saved_image_path = os.path.join(image_dir, image_name + '_flip' + image_ext)
try:
flipped_image = Image.open(saved_image_path)
except:
flipped_image = Image.open(image_path)
flipped_image = flipped_image.transpose(Image.FLIP_LEFT_RIGHT)
flipped_image.save(saved_image_path, 'png')
return saved_image_path
示例3: update_orientation
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def update_orientation(image):
exif_orientation_tag = 0x0112
if hasattr(image, '_getexif'):
exif = image._getexif()
if exif != None and exif_orientation_tag in exif:
orientation = exif.get(exif_orientation_tag, 1)
log_msg('Image has EXIF Orientation: ' + str(orientation))
# orientation is 1 based, shift to zero based and flip/transpose based on 0-based values
orientation -= 1
if orientation >= 4:
image = image.transpose(Image.TRANSPOSE)
if orientation == 2 or orientation == 3 or orientation == 6 or orientation == 7:
image = image.transpose(Image.FLIP_TOP_BOTTOM)
if orientation == 1 or orientation == 2 or orientation == 5 or orientation == 6:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
return image
示例4: pil_random_crop
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def pil_random_crop(img, scale_size, output_size, params=None):
img = pilresize(img, scale_size)
th = output_size
tw = output_size
if params is None:
w, h = img.size
if w == tw and h == th:
return img
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
flip = random.random()<0.5
else:
i,j,flip = params
img = img.crop((j, i, j + tw, i + th))
if flip:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
return img, [i, j, flip]
示例5: FlipImgs
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def FlipImgs(xmb, ymb):
bs, ci, hi, wi = xmb.shape
xmb_out = np.zeros((bs,ci,hi,wi),dtype='uint8')
ymb_out = np.zeros((bs,ci,hi,wi),dtype='uint8')
for i in xrange(bs):
x_img = xmb[i,:,:,:]
y_img = ymb[i,:,:,:]
if np.random.rand(1) > 0.5:
x_img = convert_img_back(x_img)
y_img = convert_img_back(y_img)
x_img = Image.fromarray(x_img)
y_img = Image.fromarray(y_img)
x_img = x_img.transpose(Image.FLIP_LEFT_RIGHT)
y_img = y_img.transpose(Image.FLIP_LEFT_RIGHT)
x_img = convert_img(np.array(x_img))
y_img = convert_img(np.array(y_img))
xmb_out[i,:,:,:] = x_img
ymb_out[i,:,:,:] = y_img
xmb_out = xmb_out.reshape([bs,ci,hi,wi])
ymb_out = ymb_out.reshape([bs,ci,hi,wi])
return xmb_out, ymb_out
示例6: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, img, labelmap=None, maskmap=None):
assert isinstance(img, Image.Image)
assert labelmap is None or isinstance(labelmap, Image.Image)
assert maskmap is None or isinstance(maskmap, Image.Image)
if random.random() > self.ratio:
return img, labelmap, maskmap
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if labelmap is not None:
labelmap = labelmap.transpose(Image.FLIP_LEFT_RIGHT)
if maskmap is not None:
maskmap = maskmap.transpose(Image.FLIP_LEFT_RIGHT)
return img, labelmap, maskmap
示例7: transform_xy
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def transform_xy(self, x, y, rng):
if rng.uniform(0.0, 1.0) < self.chance:
x = x if not isinstance(x, ImageType) else x.transpose(Image.FLIP_LEFT_RIGHT)
y = y if not isinstance(y, ImageType) else y.transpose(Image.FLIP_LEFT_RIGHT)
return x, y
示例8: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, sample):
img = sample['image']
mask = sample['label']
if random.random() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': img,
'label': mask}
示例9: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, img_group, is_flow=False):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
if self.is_flow:
for i in range(0, len(ret), 2):
ret[i] = ImageOps.invert(ret[i]) # invert flow pixel values when flipping
return ret
else:
return img_group
示例10: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
if random.random() < 0.5:
return np.array(img[:, :, ::-1]) #.transpose(Image.FLIP_LEFT_RIGHT)
return img
示例11: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
if not _is_pil_image(image):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(img)))
if not _is_pil_image(depth):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(depth)))
if random.random() < 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
depth = depth.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': image, 'depth': depth}
示例12: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, imgmap):
if self.consistent:
if random.random() < self.threshold:
return [i.transpose(Image.FLIP_LEFT_RIGHT) for i in imgmap]
else:
return imgmap
else:
result = []
for i in imgmap:
if random.random() < self.threshold:
result.append(i.transpose(Image.FLIP_LEFT_RIGHT))
else:
result.append(i)
assert len(result) == len(imgmap)
return result
示例13: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, images, mask):
"""Randomly flips image and their mask left to right.
Args:
images: the PIL.Image images to transform.
mask: the PIL.Image mask to transform.
Returns:
The PIL.Image (images, mask) tuple with either images and mask flipped or none of them flipped.
"""
if random.random() < self.p:
return [v.transpose(Image.FLIP_LEFT_RIGHT) for v in images], mask.transpose(Image.FLIP_LEFT_RIGHT)
else:
return images, mask
示例14: train_mapper
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def train_mapper(sample):
img_path, label, crop_size, resize_size = sample
try:
img = Image.open(img_path)
# 統一圖片大小
img = img.resize((resize_size, resize_size), Image.ANTIALIAS)
# 隨機水平翻轉
r1 = random.random()
if r1 > 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
# 隨機垂直翻轉
r2 = random.random()
if r2 > 0.5:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
# 隨機角度翻轉
r3 = random.randint(-3, 3)
img = img.rotate(r3, expand=False)
# 隨機裁剪
r4 = random.randint(0, int(resize_size - crop_size))
r5 = random.randint(0, int(resize_size - crop_size))
box = (r4, r5, r4 + crop_size, r5 + crop_size)
img = img.crop(box)
# 把圖片轉換成numpy值
img = np.array(img).astype(np.float32)
# 轉換成CHW
img = img.transpose((2, 0, 1))
# 轉換成BGR
img = img[(2, 1, 0), :, :] / 255.0
return img, int(label)
except:
print("%s 該圖片錯誤,請刪除該圖片並重新創建圖像數據列表" % img_path)
# 獲取訓練的reader
示例15: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import FLIP_LEFT_RIGHT [as 別名]
def __call__(self, img, mask):
if random.random() < 0.5:
return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT)
return img, mask