本文整理匯總了Python中Crypto.Util.number.GCD屬性的典型用法代碼示例。如果您正苦於以下問題:Python number.GCD屬性的具體用法?Python number.GCD怎麽用?Python number.GCD使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類Crypto.Util.number
的用法示例。
在下文中一共展示了number.GCD屬性的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_getStrongPrime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def test_getStrongPrime(self):
"""Util.number.getStrongPrime"""
self.assertRaises(ValueError, number.getStrongPrime, 256)
self.assertRaises(ValueError, number.getStrongPrime, 513)
bits = 512
x = number.getStrongPrime(bits)
self.assertNotEqual(x % 2, 0)
self.assertEqual(x > (1L << bits-1)-1, 1)
self.assertEqual(x < (1L << bits), 1)
e = 2**16+1
x = number.getStrongPrime(bits, e)
self.assertEqual(number.GCD(x-1, e), 1)
self.assertNotEqual(x % 2, 0)
self.assertEqual(x > (1L << bits-1)-1, 1)
self.assertEqual(x < (1L << bits), 1)
e = 2**16+2
x = number.getStrongPrime(bits, e)
self.assertEqual(number.GCD((x-1)>>1, e), 1)
self.assertNotEqual(x % 2, 0)
self.assertEqual(x > (1L << bits-1)-1, 1)
self.assertEqual(x < (1L << bits), 1)
示例2: test_getStrongPrime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def test_getStrongPrime(self):
"""Util.number.getStrongPrime"""
self.assertRaises(ValueError, number.getStrongPrime, 256)
self.assertRaises(ValueError, number.getStrongPrime, 513)
bits = 512
x = number.getStrongPrime(bits)
self.assertNotEqual(x % 2, 0)
self.assertEqual(x > (1 << bits-1)-1, 1)
self.assertEqual(x < (1 << bits), 1)
e = 2**16+1
x = number.getStrongPrime(bits, e)
self.assertEqual(number.GCD(x-1, e), 1)
self.assertNotEqual(x % 2, 0)
self.assertEqual(x > (1 << bits-1)-1, 1)
self.assertEqual(x < (1 << bits), 1)
e = 2**16+2
x = number.getStrongPrime(bits, e)
self.assertEqual(number.GCD((x-1)>>1, e), 1)
self.assertNotEqual(x % 2, 0)
self.assertEqual(x > (1 << bits-1)-1, 1)
self.assertEqual(x < (1 << bits), 1)
示例3: _nfold
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def _nfold(str, nbytes):
# Convert str to a string of length nbytes using the RFC 3961 nfold
# operation.
# Rotate the bytes in str to the right by nbits bits.
def rotate_right(str, nbits):
nbytes, remain = (nbits//8) % len(str), nbits % 8
return ''.join(chr((ord(str[i-nbytes]) >> remain) |
((ord(str[i-nbytes-1]) << (8-remain)) & 0xff))
for i in xrange(len(str)))
# Add equal-length strings together with end-around carry.
def add_ones_complement(str1, str2):
n = len(str1)
v = [ord(a) + ord(b) for a, b in zip(str1, str2)]
# Propagate carry bits to the left until there aren't any left.
while any(x & ~0xff for x in v):
v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in xrange(n)]
return ''.join(chr(x) for x in v)
# Concatenate copies of str to produce the least common multiple
# of len(str) and nbytes, rotating each copy of str to the right
# by 13 bits times its list position. Decompose the concatenation
# into slices of length nbytes, and add them together as
# big-endian ones' complement integers.
slen = len(str)
lcm = nbytes * slen / gcd(nbytes, slen)
bigstr = ''.join((rotate_right(str, 13 * i) for i in xrange(lcm / slen)))
slices = (bigstr[p:p+nbytes] for p in xrange(0, lcm, nbytes))
return reduce(add_ones_complement, slices)
示例4: recover_rsa_modulus_from_signatures
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def recover_rsa_modulus_from_signatures(m1, s1, m2, s2, e=0x10001):
"""
Calculates the modulus used to produce RSA signatures from
two known message/signature pairs and the public exponent.
Since the most common public exponent is 65537, we default
to that.
Parameters:
m1 - (string) The first message
s1 - (string) The signature of the first message
as an unencoded string
m2 - (string) The second message
s2 - (string) The signature of the second message
e - (int) The exponent to use
Returns the modulus as an integer, or False upon failure.
"""
m1 = string_to_long(m1)
s1 = string_to_long(s1)
m2 = string_to_long(m2)
s2 = string_to_long(s2)
gcd_result = number.GCD( s1 ** e - m1, s2 ** e - m2 )
if gcd_result < s1 or gcd_result < s2:
# The modulus can never be smaller than our signature.
# If this happens, we have been fed bad data.
return False
else:
return int(gcd_result)
示例5: crt
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def crt(list_a, list_m):
"""
Reference: https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html
Returns the output after computing Chinese Remainder Theorem on
x = a_1 mod m_1
x = a_2 mod m_2
...
x = a_n mod m_n
input parameter list_a = [a_1, a_2, ..., a_n]
input parameter list_m = [m_1, m_2, ..., m_n]
Returns -1 if the operation is unsuccessful due to some exceptions
"""
try:
assert len(list_a) == len(list_m)
except:
print "[+] Length of list_a should be equal to length of list_m"
return -1
for i in range(len(list_m)):
for j in range(len(list_m)):
if GCD(list_m[i], list_m[j])!= 1 and i!=j:
print "[+] Moduli should be pairwise co-prime"
return -1
M = 1
for i in list_m:
M *= i
list_b = [M/i for i in list_m]
assert len(list_b) == len(list_m)
try:
list_b_inv = [int(gmpy2.invert(list_b[i], list_m[i])) for i in range(len(list_m))]
except:
print "[+] Encountered an unusual error while calculating inverse using gmpy2.invert()"
return -1
x = 0
for i in range(len(list_m)):
x += list_a[i]*list_b[i]*list_b_inv[i]
return x % M
示例6: neg_pow
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def neg_pow(a, b, n):
assert b < 0
assert GCD(a, n) == 1
res = int(gmpy2.invert(a, n))
res = pow(res, b*(-1), n)
return res
示例7: rsa_construct
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import GCD [as 別名]
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
"""Construct an RSAKey object"""
assert isinstance(n, long)
assert isinstance(e, long)
assert isinstance(d, (long, type(None)))
assert isinstance(p, (long, type(None)))
assert isinstance(q, (long, type(None)))
assert isinstance(u, (long, type(None)))
obj = _RSAKey()
obj.n = n
obj.e = e
if d is None:
return obj
obj.d = d
if p is not None and q is not None:
obj.p = p
obj.q = q
else:
# Compute factors p and q from the private exponent d.
# We assume that n has no more than two factors.
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d*e-1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t%2==0:
t=divmod(t,2)[0]
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = 0
a = 2
while not spotted and a<100:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k<ktot:
cand = pow(a,k,n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
obj.p = GCD(cand+1,n)
spotted = 1
break
k = k*2
# This value was not any good... let's try another!
a = a+2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
assert ((n % obj.p)==0)
obj.q = divmod(n,obj.p)[0]
if u is not None:
obj.u = u
else:
obj.u = inverse(obj.p, obj.q)
return obj