本文整理匯總了PHP中phpseclib\Math\BigInteger::randomPrime方法的典型用法代碼示例。如果您正苦於以下問題:PHP BigInteger::randomPrime方法的具體用法?PHP BigInteger::randomPrime怎麽用?PHP BigInteger::randomPrime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類phpseclib\Math\BigInteger
的用法示例。
在下文中一共展示了BigInteger::randomPrime方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的PHP代碼示例。
示例1: handle
/**
* Execute the console command.
*
* @return mixed
*/
public function handle()
{
$maxInt = 2147483647;
$min = new BigInteger(10000000.0);
$max = new BigInteger($maxInt);
$prime = $max->randomPrime($min, $max);
$a = new BigInteger($prime);
$b = new BigInteger($maxInt + 1);
if (!($inverse = $a->modInverse($b))) {
$this->error("An error accured during calculation. Please re-run 'php artisan rocid:generate'.");
return;
}
$random = hexdec(bin2hex(Random::string(4))) & $maxInt;
$this->info("Generated numbers (Paste these in config/rockid.php) :\nprime: {$prime}\ninverse: {$inverse}\nrandom: {$random}");
}
示例2: execute
protected function execute(InputInterface $input, OutputInterface $output)
{
$prime = $input->getArgument('prime');
// Get a pseudo-random prime.
if (!$prime) {
$min = new BigInteger(10000000.0);
$max = new BigInteger(Optimus::MAX_INT);
$prime = $max->randomPrime($min, $max);
}
// Calculate the inverse.
$a = new BigInteger($prime);
$b = new BigInteger(Optimus::MAX_INT + 1);
if (!($inverse = $a->modInverse($b))) {
$output->writeln('<error>Invalid prime number</>');
return;
}
$rand = hexdec(bin2hex(Random::string(4))) & Optimus::MAX_INT;
$output->writeln('Prime: ' . $prime);
$output->writeln('Inverse: ' . $inverse);
$output->writeln('Random: ' . $rand);
$output->writeln('');
$output->writeln(' new Optimus(' . $prime . ', ' . $inverse . ', ' . $rand . ');');
}
示例3: createKey
/**
* Create public / private key pair
*
* Returns an array with the following three elements:
* - 'privatekey': The private key.
* - 'publickey': The public key.
* - 'partialkey': A partially computed key (if the execution time exceeded $timeout).
* Will need to be passed back to RSA::createKey() as the third parameter for further processing.
*
* @access public
* @param
* optional Integer $bits
* @param
* optional Integer $timeout
* @param
* optional BigInteger $p
*/
function createKey($bits = 1024, $timeout = false, $partial = array())
{
if (!defined('CRYPT_RSA_EXPONENT')) {
// http://en.wikipedia.org/wiki/65537_%28number%29
@define('CRYPT_RSA_EXPONENT', '65537');
}
// per <http://cseweb.ucsd.edu/~hovav/dist/survey.pdf#page=5>, this number ought not result in primes smaller
// than 256 bits. as a consequence if the key you're trying to create is 1024 bits and you've set CRYPT_RSA_SMALLEST_PRIME
// to 384 bits then you're going to get a 384 bit prime and a 640 bit prime (384 + 1024 % 384). at least if
// CRYPT_RSA_MODE is set to CRYPT_RSA_MODE_INTERNAL. if CRYPT_RSA_MODE is set to CRYPT_RSA_MODE_OPENSSL then
// CRYPT_RSA_SMALLEST_PRIME is ignored (ie. multi-prime RSA support is more intended as a way to speed up RSA key
// generation when there's a chance neither gmp nor OpenSSL are installed)
if (!defined('CRYPT_RSA_SMALLEST_PRIME')) {
@define('CRYPT_RSA_SMALLEST_PRIME', 4096);
}
// OpenSSL uses 65537 as the exponent and requires RSA keys be 384 bits minimum
if (CRYPT_RSA_MODE == CRYPT_RSA_MODE_OPENSSL && $bits >= 384 && CRYPT_RSA_EXPONENT == 65537) {
$config = array();
if (isset($this->configFile)) {
$config['config'] = $this->configFile;
}
$rsa = openssl_pkey_new(array('private_key_bits' => $bits) + $config);
openssl_pkey_export($rsa, $privatekey, null, $config);
$publickey = openssl_pkey_get_details($rsa);
$publickey = $publickey['key'];
$privatekey = call_user_func_array(array($this, '_convertPrivateKey'), array_values($this->_parseKey($privatekey, CRYPT_RSA_PRIVATE_FORMAT_PKCS1)));
$publickey = call_user_func_array(array($this, '_convertPublicKey'), array_values($this->_parseKey($publickey, CRYPT_RSA_PUBLIC_FORMAT_PKCS1)));
// clear the buffer of error strings stemming from a minimalistic openssl.cnf
while (openssl_error_string() !== false) {
}
return array('privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false);
}
static $e;
if (!isset($e)) {
$e = new BigInteger(CRYPT_RSA_EXPONENT);
}
extract($this->_generateMinMax($bits));
$absoluteMin = $min;
$temp = $bits >> 1;
// divide by two to see how many bits P and Q would be
if ($temp > CRYPT_RSA_SMALLEST_PRIME) {
$num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME);
$temp = CRYPT_RSA_SMALLEST_PRIME;
} else {
$num_primes = 2;
}
extract($this->_generateMinMax($temp + $bits % $temp));
$finalMax = $max;
extract($this->_generateMinMax($temp));
$generator = new BigInteger();
$n = $this->one->copy();
if (!empty($partial)) {
extract(unserialize($partial));
} else {
$exponents = $coefficients = $primes = array();
$lcm = array('top' => $this->one->copy(), 'bottom' => false);
}
$start = time();
$i0 = count($primes) + 1;
do {
for ($i = $i0; $i <= $num_primes; $i++) {
if ($timeout !== false) {
$timeout -= time() - $start;
$start = time();
if ($timeout <= 0) {
return array('privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents)));
}
}
if ($i == $num_primes) {
list($min, $temp) = $absoluteMin->divide($n);
if (!$temp->equals($this->zero)) {
$min = $min->add($this->one);
// ie. ceil()
}
$primes[$i] = $generator->randomPrime($min, $finalMax, $timeout);
} else {
$primes[$i] = $generator->randomPrime($min, $max, $timeout);
}
if ($primes[$i] === false) {
// if we've reached the timeout
if (count($primes) > 1) {
$partialkey = '';
} else {
//.........這裏部分代碼省略.........
示例4: generatePrime
/**
* Generate a random large prime.
*
* @return int
*/
public static function generatePrime()
{
$min = new BigInteger(10000000.0);
$max = new BigInteger(Optimus::MAX_INT);
return (int) $max->randomPrime($min, $max)->toString();
}
示例5: createKey
//.........這裏部分代碼省略.........
$e = new BigInteger(CRYPT_RSA_EXPONENT);
}
extract(self::_generateMinMax($bits));
$absoluteMin = $min;
$temp = $bits >> 1;
// divide by two to see how many bits P and Q would be
if ($temp > CRYPT_RSA_SMALLEST_PRIME) {
$num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME);
$temp = CRYPT_RSA_SMALLEST_PRIME;
} else {
$num_primes = 2;
}
extract(self::_generateMinMax($temp + $bits % $temp));
$finalMax = $max;
extract(self::_generateMinMax($temp));
$n = clone self::$one;
if (!empty($partial)) {
extract(unserialize($partial));
} else {
$exponents = $coefficients = $primes = array();
$lcm = array('top' => clone self::$one, 'bottom' => false);
}
$start = time();
$i0 = count($primes) + 1;
do {
for ($i = $i0; $i <= $num_primes; $i++) {
if ($timeout !== false) {
$timeout -= time() - $start;
$start = time();
if ($timeout <= 0) {
return array('privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents)));
}
}
if ($i == $num_primes) {
list($min, $temp) = $absoluteMin->divide($n);
if (!$temp->equals(self::$zero)) {
$min = $min->add(self::$one);
// ie. ceil()
}
$primes[$i] = BigInteger::randomPrime($min, $finalMax, $timeout);
} else {
$primes[$i] = BigInteger::randomPrime($min, $max, $timeout);
}
if ($primes[$i] === false) {
// if we've reached the timeout
if (count($primes) > 1) {
$partialkey = '';
} else {
array_pop($primes);
$partialkey = serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents));
}
return array('privatekey' => false, 'publickey' => false, 'partialkey' => $partialkey);
}
// the first coefficient is calculated differently from the rest
// ie. instead of being $primes[1]->modInverse($primes[2]), it's $primes[2]->modInverse($primes[1])
if ($i > 2) {
$coefficients[$i] = $n->modInverse($primes[$i]);
}
$n = $n->multiply($primes[$i]);
$temp = $primes[$i]->subtract(self::$one);
// textbook RSA implementations use Euler's totient function instead of the least common multiple.
// see http://en.wikipedia.org/wiki/Euler%27s_totient_function
$lcm['top'] = $lcm['top']->multiply($temp);
$lcm['bottom'] = $lcm['bottom'] === false ? $temp : $lcm['bottom']->gcd($temp);
$exponents[$i] = $e->modInverse($temp);
}
list($temp) = $lcm['top']->divide($lcm['bottom']);
$gcd = $temp->gcd($e);
$i0 = 1;
} while (!$gcd->equals(self::$one));
$d = $e->modInverse($temp);
$coefficients[2] = $primes[2]->modInverse($primes[1]);
// from <http://tools.ietf.org/html/rfc3447#appendix-A.1.2>:
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER, -- n
// publicExponent INTEGER, -- e
// privateExponent INTEGER, -- d
// prime1 INTEGER, -- p
// prime2 INTEGER, -- q
// exponent1 INTEGER, -- d mod (p-1)
// exponent2 INTEGER, -- d mod (q-1)
// coefficient INTEGER, -- (inverse of q) mod p
// otherPrimeInfos OtherPrimeInfos OPTIONAL
// }
$privatekey = new RSA();
$privatekey->modulus = $n;
$privatekey->k = $bits >> 3;
$privatekey->publicExponent = $e;
$privatekey->exponent = $d;
$privatekey->privateExponent = $e;
$privatekey->primes = $primes;
$privatekey->exponents = $exponents;
$privatekey->coefficients = $coefficients;
$publickey = new RSA();
$publickey->modulus = $n;
$publickey->k = $bits >> 3;
$publickey->exponent = $e;
return array('privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false);
}