當前位置: 首頁>>代碼示例>>PHP>>正文


PHP BigInteger::randomPrime方法代碼示例

本文整理匯總了PHP中phpseclib\Math\BigInteger::randomPrime方法的典型用法代碼示例。如果您正苦於以下問題:PHP BigInteger::randomPrime方法的具體用法?PHP BigInteger::randomPrime怎麽用?PHP BigInteger::randomPrime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在phpseclib\Math\BigInteger的用法示例。


在下文中一共展示了BigInteger::randomPrime方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的PHP代碼示例。

示例1: handle

 /**
  * Execute the console command.
  *
  * @return mixed
  */
 public function handle()
 {
     $maxInt = 2147483647;
     $min = new BigInteger(10000000.0);
     $max = new BigInteger($maxInt);
     $prime = $max->randomPrime($min, $max);
     $a = new BigInteger($prime);
     $b = new BigInteger($maxInt + 1);
     if (!($inverse = $a->modInverse($b))) {
         $this->error("An error accured during calculation. Please re-run 'php artisan rocid:generate'.");
         return;
     }
     $random = hexdec(bin2hex(Random::string(4))) & $maxInt;
     $this->info("Generated numbers (Paste these in config/rockid.php) :\nprime: {$prime}\ninverse: {$inverse}\nrandom: {$random}");
 }
開發者ID:alihann,項目名稱:laravel-rockid,代碼行數:20,代碼來源:RockidGenerateCommand.php

示例2: execute

 protected function execute(InputInterface $input, OutputInterface $output)
 {
     $prime = $input->getArgument('prime');
     // Get a pseudo-random prime.
     if (!$prime) {
         $min = new BigInteger(10000000.0);
         $max = new BigInteger(Optimus::MAX_INT);
         $prime = $max->randomPrime($min, $max);
     }
     // Calculate the inverse.
     $a = new BigInteger($prime);
     $b = new BigInteger(Optimus::MAX_INT + 1);
     if (!($inverse = $a->modInverse($b))) {
         $output->writeln('<error>Invalid prime number</>');
         return;
     }
     $rand = hexdec(bin2hex(Random::string(4))) & Optimus::MAX_INT;
     $output->writeln('Prime: ' . $prime);
     $output->writeln('Inverse: ' . $inverse);
     $output->writeln('Random: ' . $rand);
     $output->writeln('');
     $output->writeln('    new Optimus(' . $prime . ', ' . $inverse . ', ' . $rand . ');');
 }
開發者ID:vienis,項目名稱:optimus,代碼行數:23,代碼來源:SparkCommand.php

示例3: createKey

 /**
  * Create public / private key pair
  *
  * Returns an array with the following three elements:
  * - 'privatekey': The private key.
  * - 'publickey': The public key.
  * - 'partialkey': A partially computed key (if the execution time exceeded $timeout).
  * Will need to be passed back to RSA::createKey() as the third parameter for further processing.
  *
  * @access public
  * @param
  *        	optional Integer $bits
  * @param
  *        	optional Integer $timeout
  * @param
  *        	optional BigInteger $p
  */
 function createKey($bits = 1024, $timeout = false, $partial = array())
 {
     if (!defined('CRYPT_RSA_EXPONENT')) {
         // http://en.wikipedia.org/wiki/65537_%28number%29
         @define('CRYPT_RSA_EXPONENT', '65537');
     }
     // per <http://cseweb.ucsd.edu/~hovav/dist/survey.pdf#page=5>, this number ought not result in primes smaller
     // than 256 bits. as a consequence if the key you're trying to create is 1024 bits and you've set CRYPT_RSA_SMALLEST_PRIME
     // to 384 bits then you're going to get a 384 bit prime and a 640 bit prime (384 + 1024 % 384). at least if
     // CRYPT_RSA_MODE is set to CRYPT_RSA_MODE_INTERNAL. if CRYPT_RSA_MODE is set to CRYPT_RSA_MODE_OPENSSL then
     // CRYPT_RSA_SMALLEST_PRIME is ignored (ie. multi-prime RSA support is more intended as a way to speed up RSA key
     // generation when there's a chance neither gmp nor OpenSSL are installed)
     if (!defined('CRYPT_RSA_SMALLEST_PRIME')) {
         @define('CRYPT_RSA_SMALLEST_PRIME', 4096);
     }
     // OpenSSL uses 65537 as the exponent and requires RSA keys be 384 bits minimum
     if (CRYPT_RSA_MODE == CRYPT_RSA_MODE_OPENSSL && $bits >= 384 && CRYPT_RSA_EXPONENT == 65537) {
         $config = array();
         if (isset($this->configFile)) {
             $config['config'] = $this->configFile;
         }
         $rsa = openssl_pkey_new(array('private_key_bits' => $bits) + $config);
         openssl_pkey_export($rsa, $privatekey, null, $config);
         $publickey = openssl_pkey_get_details($rsa);
         $publickey = $publickey['key'];
         $privatekey = call_user_func_array(array($this, '_convertPrivateKey'), array_values($this->_parseKey($privatekey, CRYPT_RSA_PRIVATE_FORMAT_PKCS1)));
         $publickey = call_user_func_array(array($this, '_convertPublicKey'), array_values($this->_parseKey($publickey, CRYPT_RSA_PUBLIC_FORMAT_PKCS1)));
         // clear the buffer of error strings stemming from a minimalistic openssl.cnf
         while (openssl_error_string() !== false) {
         }
         return array('privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false);
     }
     static $e;
     if (!isset($e)) {
         $e = new BigInteger(CRYPT_RSA_EXPONENT);
     }
     extract($this->_generateMinMax($bits));
     $absoluteMin = $min;
     $temp = $bits >> 1;
     // divide by two to see how many bits P and Q would be
     if ($temp > CRYPT_RSA_SMALLEST_PRIME) {
         $num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME);
         $temp = CRYPT_RSA_SMALLEST_PRIME;
     } else {
         $num_primes = 2;
     }
     extract($this->_generateMinMax($temp + $bits % $temp));
     $finalMax = $max;
     extract($this->_generateMinMax($temp));
     $generator = new BigInteger();
     $n = $this->one->copy();
     if (!empty($partial)) {
         extract(unserialize($partial));
     } else {
         $exponents = $coefficients = $primes = array();
         $lcm = array('top' => $this->one->copy(), 'bottom' => false);
     }
     $start = time();
     $i0 = count($primes) + 1;
     do {
         for ($i = $i0; $i <= $num_primes; $i++) {
             if ($timeout !== false) {
                 $timeout -= time() - $start;
                 $start = time();
                 if ($timeout <= 0) {
                     return array('privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents)));
                 }
             }
             if ($i == $num_primes) {
                 list($min, $temp) = $absoluteMin->divide($n);
                 if (!$temp->equals($this->zero)) {
                     $min = $min->add($this->one);
                     // ie. ceil()
                 }
                 $primes[$i] = $generator->randomPrime($min, $finalMax, $timeout);
             } else {
                 $primes[$i] = $generator->randomPrime($min, $max, $timeout);
             }
             if ($primes[$i] === false) {
                 // if we've reached the timeout
                 if (count($primes) > 1) {
                     $partialkey = '';
                 } else {
//.........這裏部分代碼省略.........
開發者ID:HerO-0110,項目名稱:EmailAuth,代碼行數:101,代碼來源:RSA.php

示例4: generatePrime

 /**
  * Generate a random large prime.
  *
  * @return int
  */
 public static function generatePrime()
 {
     $min = new BigInteger(10000000.0);
     $max = new BigInteger(Optimus::MAX_INT);
     return (int) $max->randomPrime($min, $max)->toString();
 }
開發者ID:jenssegers,項目名稱:optimus,代碼行數:11,代碼來源:Energon.php

示例5: createKey


//.........這裏部分代碼省略.........
         $e = new BigInteger(CRYPT_RSA_EXPONENT);
     }
     extract(self::_generateMinMax($bits));
     $absoluteMin = $min;
     $temp = $bits >> 1;
     // divide by two to see how many bits P and Q would be
     if ($temp > CRYPT_RSA_SMALLEST_PRIME) {
         $num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME);
         $temp = CRYPT_RSA_SMALLEST_PRIME;
     } else {
         $num_primes = 2;
     }
     extract(self::_generateMinMax($temp + $bits % $temp));
     $finalMax = $max;
     extract(self::_generateMinMax($temp));
     $n = clone self::$one;
     if (!empty($partial)) {
         extract(unserialize($partial));
     } else {
         $exponents = $coefficients = $primes = array();
         $lcm = array('top' => clone self::$one, 'bottom' => false);
     }
     $start = time();
     $i0 = count($primes) + 1;
     do {
         for ($i = $i0; $i <= $num_primes; $i++) {
             if ($timeout !== false) {
                 $timeout -= time() - $start;
                 $start = time();
                 if ($timeout <= 0) {
                     return array('privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents)));
                 }
             }
             if ($i == $num_primes) {
                 list($min, $temp) = $absoluteMin->divide($n);
                 if (!$temp->equals(self::$zero)) {
                     $min = $min->add(self::$one);
                     // ie. ceil()
                 }
                 $primes[$i] = BigInteger::randomPrime($min, $finalMax, $timeout);
             } else {
                 $primes[$i] = BigInteger::randomPrime($min, $max, $timeout);
             }
             if ($primes[$i] === false) {
                 // if we've reached the timeout
                 if (count($primes) > 1) {
                     $partialkey = '';
                 } else {
                     array_pop($primes);
                     $partialkey = serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents));
                 }
                 return array('privatekey' => false, 'publickey' => false, 'partialkey' => $partialkey);
             }
             // the first coefficient is calculated differently from the rest
             // ie. instead of being $primes[1]->modInverse($primes[2]), it's $primes[2]->modInverse($primes[1])
             if ($i > 2) {
                 $coefficients[$i] = $n->modInverse($primes[$i]);
             }
             $n = $n->multiply($primes[$i]);
             $temp = $primes[$i]->subtract(self::$one);
             // textbook RSA implementations use Euler's totient function instead of the least common multiple.
             // see http://en.wikipedia.org/wiki/Euler%27s_totient_function
             $lcm['top'] = $lcm['top']->multiply($temp);
             $lcm['bottom'] = $lcm['bottom'] === false ? $temp : $lcm['bottom']->gcd($temp);
             $exponents[$i] = $e->modInverse($temp);
         }
         list($temp) = $lcm['top']->divide($lcm['bottom']);
         $gcd = $temp->gcd($e);
         $i0 = 1;
     } while (!$gcd->equals(self::$one));
     $d = $e->modInverse($temp);
     $coefficients[2] = $primes[2]->modInverse($primes[1]);
     // from <http://tools.ietf.org/html/rfc3447#appendix-A.1.2>:
     // RSAPrivateKey ::= SEQUENCE {
     //     version           Version,
     //     modulus           INTEGER,  -- n
     //     publicExponent    INTEGER,  -- e
     //     privateExponent   INTEGER,  -- d
     //     prime1            INTEGER,  -- p
     //     prime2            INTEGER,  -- q
     //     exponent1         INTEGER,  -- d mod (p-1)
     //     exponent2         INTEGER,  -- d mod (q-1)
     //     coefficient       INTEGER,  -- (inverse of q) mod p
     //     otherPrimeInfos   OtherPrimeInfos OPTIONAL
     // }
     $privatekey = new RSA();
     $privatekey->modulus = $n;
     $privatekey->k = $bits >> 3;
     $privatekey->publicExponent = $e;
     $privatekey->exponent = $d;
     $privatekey->privateExponent = $e;
     $privatekey->primes = $primes;
     $privatekey->exponents = $exponents;
     $privatekey->coefficients = $coefficients;
     $publickey = new RSA();
     $publickey->modulus = $n;
     $publickey->k = $bits >> 3;
     $publickey->exponent = $e;
     return array('privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false);
 }
開發者ID:paragonie-scott,項目名稱:phpseclib,代碼行數:101,代碼來源:RSA.php


注:本文中的phpseclib\Math\BigInteger::randomPrime方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。