本文整理匯總了PHP中Zend_Search_Lucene_Index_Term::getLength方法的典型用法代碼示例。如果您正苦於以下問題:PHP Zend_Search_Lucene_Index_Term::getLength方法的具體用法?PHP Zend_Search_Lucene_Index_Term::getLength怎麽用?PHP Zend_Search_Lucene_Index_Term::getLength使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Zend_Search_Lucene_Index_Term
的用法示例。
在下文中一共展示了Zend_Search_Lucene_Index_Term::getLength方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的PHP代碼示例。
示例1: rewrite
/**
* Re-write query into primitive queries in the context of specified index
*
* @param Zend_Search_Lucene_Interface $index
* @return Zend_Search_Lucene_Search_Query
*/
public function rewrite(Zend_Search_Lucene_Interface $index)
{
$this->_matches = array();
$this->_scores = array();
$this->_termKeys = array();
if ($this->_term->field === null) {
// Search through all fields
$fields = $index->getFieldNames(true);
} else {
$fields = array($this->_term->field);
}
$prefix = Zend_Search_Lucene_Index_Term::getPrefix($this->_term->text, $this->_prefixLength);
$prefixByteLength = strlen($prefix);
$prefixUtf8Length = Zend_Search_Lucene_Index_Term::getLength($prefix);
$termLength = Zend_Search_Lucene_Index_Term::getLength($this->_term->text);
$termRest = substr($this->_term->text, $prefixByteLength);
// we calculate length of the rest in bytes since levenshtein() is not UTF-8 compatible
$termRestLength = strlen($termRest);
$scaleFactor = 1 / (1 - $this->_minimumSimilarity);
foreach ($fields as $field) {
$index->resetTermsStream();
if ($prefix != '') {
$index->skipTo(new Zend_Search_Lucene_Index_Term($prefix, $field));
while ($index->currentTerm() !== null && $index->currentTerm()->field == $field && substr($index->currentTerm()->text, 0, $prefixByteLength) == $prefix) {
// Calculate similarity
$target = substr($index->currentTerm()->text, $prefixByteLength);
$maxDistance = isset($this->_maxDistances[strlen($target)]) ? $this->_maxDistances[strlen($target)] : $this->_calculateMaxDistance($prefixUtf8Length, $termRestLength, strlen($target));
if ($termRestLength == 0) {
// we don't have anything to compare. That means if we just add
// the letters for current term we get the new word
$similarity = $prefixUtf8Length == 0 ? 0 : 1 - strlen($target) / $prefixUtf8Length;
} else {
if (strlen($target) == 0) {
$similarity = $prefixUtf8Length == 0 ? 0 : 1 - $termRestLength / $prefixUtf8Length;
} else {
if ($maxDistance < abs($termRestLength - strlen($target))) {
//just adding the characters of term to target or vice-versa results in too many edits
//for example "pre" length is 3 and "prefixes" length is 8. We can see that
//given this optimal circumstance, the edit distance cannot be less than 5.
//which is 8-3 or more precisesly abs(3-8).
//if our maximum edit distance is 4, then we can discard this word
//without looking at it.
$similarity = 0;
} else {
$similarity = 1 - levenshtein($termRest, $target) / ($prefixUtf8Length + min($termRestLength, strlen($target)));
}
}
}
if ($similarity > $this->_minimumSimilarity) {
$this->_matches[] = $index->currentTerm();
$this->_termKeys[] = $index->currentTerm()->key();
$this->_scores[] = ($similarity - $this->_minimumSimilarity) * $scaleFactor;
}
$index->nextTerm();
}
} else {
$index->skipTo(new Zend_Search_Lucene_Index_Term('', $field));
while ($index->currentTerm() !== null && $index->currentTerm()->field == $field) {
// Calculate similarity
$target = $index->currentTerm()->text;
$maxDistance = isset($this->_maxDistances[strlen($target)]) ? $this->_maxDistances[strlen($target)] : $this->_calculateMaxDistance(0, $termRestLength, strlen($target));
if ($maxDistance < abs($termRestLength - strlen($target))) {
//just adding the characters of term to target or vice-versa results in too many edits
//for example "pre" length is 3 and "prefixes" length is 8. We can see that
//given this optimal circumstance, the edit distance cannot be less than 5.
//which is 8-3 or more precisesly abs(3-8).
//if our maximum edit distance is 4, then we can discard this word
//without looking at it.
$similarity = 0;
} else {
$similarity = 1 - levenshtein($termRest, $target) / min($termRestLength, strlen($target));
}
if ($similarity > $this->_minimumSimilarity) {
$this->_matches[] = $index->currentTerm();
$this->_termKeys[] = $index->currentTerm()->key();
$this->_scores[] = ($similarity - $this->_minimumSimilarity) * $scaleFactor;
}
$index->nextTerm();
}
}
$index->closeTermsStream();
}
if (count($this->_matches) == 0) {
return new Zend_Search_Lucene_Search_Query_Empty();
} else {
if (count($this->_matches) == 1) {
return new Zend_Search_Lucene_Search_Query_Term(reset($this->_matches));
} else {
$rewrittenQuery = new Zend_Search_Lucene_Search_Query_Boolean();
array_multisort($this->_scores, SORT_DESC, SORT_NUMERIC, $this->_termKeys, SORT_ASC, SORT_STRING, $this->_matches);
$termCount = 0;
foreach ($this->_matches as $id => $matchedTerm) {
$subquery = new Zend_Search_Lucene_Search_Query_Term($matchedTerm);
$subquery->setBoost($this->_scores[$id]);
//.........這裏部分代碼省略.........
示例2: _highlightMatches
/**
* Query specific matches highlighting
*
* @param Zend_Search_Lucene_Search_Highlighter_Interface $highlighter Highlighter object (also contains doc for highlighting)
*/
protected function _highlightMatches(Zend_Search_Lucene_Search_Highlighter_Interface $highlighter)
{
$words = array();
//$1 'Zend/Search/Lucene/Index/Term.php';
$prefix = Zend_Search_Lucene_Index_Term::getPrefix($this->_term->text, $this->_prefixLength);
$prefixByteLength = strlen($prefix);
$prefixUtf8Length = Zend_Search_Lucene_Index_Term::getLength($prefix);
$termLength = Zend_Search_Lucene_Index_Term::getLength($this->_term->text);
$termRest = substr($this->_term->text, $prefixByteLength);
// we calculate length of the rest in bytes since levenshtein() is not UTF-8 compatible
$termRestLength = strlen($termRest);
$scaleFactor = 1 / (1 - $this->_minimumSimilarity);
$docBody = $highlighter->getDocument()->getFieldUtf8Value('body');
//$1 'Zend/Search/Lucene/Analysis/Analyzer.php';
$tokens = Zend_Search_Lucene_Analysis_Analyzer::getDefault()->tokenize($docBody, 'UTF-8');
foreach ($tokens as $token) {
$termText = $token->getTermText();
if (substr($termText, 0, $prefixByteLength) == $prefix) {
// Calculate similarity
$target = substr($termText, $prefixByteLength);
$maxDistance = isset($this->_maxDistances[strlen($target)]) ? $this->_maxDistances[strlen($target)] : $this->_calculateMaxDistance($prefixUtf8Length, $termRestLength, strlen($target));
if ($termRestLength == 0) {
// we don't have anything to compare. That means if we just add
// the letters for current term we get the new word
$similarity = $prefixUtf8Length == 0 ? 0 : 1 - strlen($target) / $prefixUtf8Length;
} else {
if (strlen($target) == 0) {
$similarity = $prefixUtf8Length == 0 ? 0 : 1 - $termRestLength / $prefixUtf8Length;
} else {
if ($maxDistance < abs($termRestLength - strlen($target))) {
//just adding the characters of term to target or vice-versa results in too many edits
//for example "pre" length is 3 and "prefixes" length is 8. We can see that
//given this optimal circumstance, the edit distance cannot be less than 5.
//which is 8-3 or more precisesly abs(3-8).
//if our maximum edit distance is 4, then we can discard this word
//without looking at it.
$similarity = 0;
} else {
$similarity = 1 - levenshtein($termRest, $target) / ($prefixUtf8Length + min($termRestLength, strlen($target)));
}
}
}
if ($similarity > $this->_minimumSimilarity) {
$words[] = $termText;
}
}
}
$highlighter->highlight($words);
}
示例3: _highlightMatches
protected function _highlightMatches(Zend_Search_Lucene_Search_Highlighter_Interface $highlighter)
{
$words = array();
$prefix = Zend_Search_Lucene_Index_Term::getPrefix($this->_term->text, $this->_prefixLength);
$prefixByteLength = strlen($prefix);
$prefixUtf8Length = Zend_Search_Lucene_Index_Term::getLength($prefix);
$termLength = Zend_Search_Lucene_Index_Term::getLength($this->_term->text);
$termRest = substr($this->_term->text, $prefixByteLength);
$termRestLength = strlen($termRest);
$scaleFactor = 1 / (1 - $this->_minimumSimilarity);
$docBody = $highlighter->getDocument()->getFieldUtf8Value('body');
$tokens = Zend_Search_Lucene_Analysis_Analyzer::getDefault()->tokenize($docBody, 'UTF-8');
foreach ($tokens as $token) {
$termText = $token->getTermText();
if (substr($termText, 0, $prefixByteLength) == $prefix) {
$target = substr($termText, $prefixByteLength);
$maxDistance = isset($this->_maxDistances[strlen($target)]) ? $this->_maxDistances[strlen($target)] : $this->_calculateMaxDistance($prefixUtf8Length, $termRestLength, strlen($target));
if ($termRestLength == 0) {
$similarity = $prefixUtf8Length == 0 ? 0 : 1 - strlen($target) / $prefixUtf8Length;
} else {
if (strlen($target) == 0) {
$similarity = $prefixUtf8Length == 0 ? 0 : 1 - $termRestLength / $prefixUtf8Length;
} else {
if ($maxDistance < abs($termRestLength - strlen($target))) {
$similarity = 0;
} else {
$similarity = 1 - levenshtein($termRest, $target) / ($prefixUtf8Length + min($termRestLength, strlen($target)));
}
}
}
if ($similarity > $this->_minimumSimilarity) {
$words[] = $termText;
}
}
}
$highlighter->highlight($words);
}