本文整理匯總了Java中weka.core.Instance.value方法的典型用法代碼示例。如果您正苦於以下問題:Java Instance.value方法的具體用法?Java Instance.value怎麽用?Java Instance.value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.core.Instance
的用法示例。
在下文中一共展示了Instance.value方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: instanceToDenseDMatrix
import weka.core.Instance; //導入方法依賴的package包/類
public static DMatrix instanceToDenseDMatrix(Instance instance) throws XGBoostError {
Attribute classAttribute = instance.classAttribute();
int classAttrIndex = classAttribute.index();
int colNum = instance.numAttributes()-1;
int rowNum = 1;
float[] data = new float[colNum*rowNum];
Enumeration<Attribute> attributeEnumeration = instance.enumerateAttributes();
int dataIndex = 0;
while (attributeEnumeration.hasMoreElements()) {
Attribute attribute = attributeEnumeration.nextElement();
int attrIndex = attribute.index();
if(attrIndex == classAttrIndex){
continue;
}
data[dataIndex]= (float) instance.value(attribute);
dataIndex++;
}
return new DMatrix(data, rowNum, colNum);
}
示例2: getTopPositiveWekaFeaturesInReport
import weka.core.Instance; //導入方法依賴的package包/類
protected List<FeatureWeight> getTopPositiveWekaFeaturesInReport(Instance reportInstance,
HashMap<String, Integer> featureIndexMap, String[][] featureWeightTable, int topKwords) throws Exception {
List<FeatureWeight> topPositiveFeatureList = new ArrayList<>();
int iFeature = 0;
double weight;
FeatureWeight featureWeight;
while(topPositiveFeatureList.size() < topKwords &&
iFeature < featureIndexMap.size()) {
weight = Double.parseDouble(featureWeightTable[iFeature][1]);
if(weight > 0 &&
reportInstance.value(featureIndexMap.get(featureWeightTable[iFeature][0]) + 1) == 1) { // reportID is the first att in reportInstance
featureWeight = new FeatureWeight();
featureWeight.setTerm(featureWeightTable[iFeature][0]);
featureWeight.setWeight(weight);
topPositiveFeatureList.add(featureWeight);
}
iFeature++;
}
return topPositiveFeatureList;
}
示例3: mergeInstanceIntoTuple
import weka.core.Instance; //導入方法依賴的package包/類
private void mergeInstanceIntoTuple(Instance instance, Tuple tuple) throws DbException {
// Merge the tuple and the instance. Only values in dropFields will
// change; the other values of the tuple will be unchanged by the
// imputation.
Iterator<Entry<Integer, Integer>> indexIt = this.dropFieldsIndicesMap.entrySet().iterator();
while (indexIt.hasNext()){
Entry<Integer, Integer> map = indexIt.next();
int k = map.getKey(); // index in Instance
int v = map.getValue(); // index in Tuple
double value = instance.value(k);
if (td.getFieldType(v) == Type.INT_TYPE){
tuple.setField(v, new IntField((int) value));
} else if (td.getFieldType(v) == Type.DOUBLE_TYPE){
tuple.setField(v, new DoubleField(value));
} else {
throw new DbException("Field type not implemented.");
}
}
}
示例4: classifyInstance
import weka.core.Instance; //導入方法依賴的package包/類
@Override
public double classifyInstance(Instance sample) throws Exception {
// transform instance to sequence
MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
int shift = (sample.classIndex() == 0) ? 1 : 0;
for (int t = 0; t < sequence.length; t++) {
sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
}
SymbolicSequence seq = new SymbolicSequence(sequence);
double minD = Double.MAX_VALUE;
String classValue = null;
seq.LB_KeoghFillUL(bestWarpingWindow, U, L);
for (int i = 0; i < train.length; i++) {
SymbolicSequence s = train[i];
if (SymbolicSequence.LB_KeoghPreFilled(s, U, L) < minD) {
double tmpD = seq.DTW(s,bestWarpingWindow, warpingMatrix);
if (tmpD < minD) {
minD = tmpD;
classValue = classMap[i];
}
}
}
// System.out.println(prototypes.size());
return sample.classAttribute().indexOfValue(classValue);
}
示例5: computeOmegaDelta
import weka.core.Instance; //導入方法依賴的package包/類
private static double computeOmegaDelta(M5P model, M5P modelPi, Instances omega) throws Exception{
double retval = 0., y;
Enumeration<Instance> enu = omega.enumerateInstances();
int idxClass = omega.classIndex();
Instance ins;
while(enu.hasMoreElements()){
ins = enu.nextElement();
y = ins.value(idxClass);
retval += Math.pow(y-model.classifyInstance(ins), 2)-Math.pow(y-modelPi.classifyInstance(ins), 2);
}
return retval;
}
示例6: coveredInstance
import weka.core.Instance; //導入方法依賴的package包/類
public boolean coveredInstance(Instance instanceIn){
if (isCategorial()) {
return instanceIn.value((int) attributeIndex) == attributeValue;
}else if(isNumeric()){
return (upperBoundNumeric >= instanceIn.value((int) attributeIndex) && lowerBoundNumeric < instanceIn.value((int) attributeIndex));
}
return false;
}
示例7: instancesToDenseDMatrix
import weka.core.Instance; //導入方法依賴的package包/類
public static DMatrix instancesToDenseDMatrix(Instances instances) throws XGBoostError {
int colNum = instances.numAttributes()-1;
int rowNum = instances.size();
float[] data = new float[colNum*rowNum];
float[] labels = new float[instances.size()];
Attribute classAttribute = instances.classAttribute();
int classAttrIndex = classAttribute.index();
for(int i=0, dataIndex = 0; i<instances.size(); i++) {
Instance instance = instances.get(i);
labels[i] = (float) instance.classValue();
Enumeration<Attribute> attributeEnumeration = instance.enumerateAttributes();
while (attributeEnumeration.hasMoreElements()) {
Attribute attribute = attributeEnumeration.nextElement();
int attrIndex = attribute.index();
if(attrIndex == classAttrIndex){
continue;
}
data[dataIndex]= (float) instance.value(attribute);
dataIndex++;
}
}
DMatrix dMatrix = new DMatrix(data, rowNum, colNum);
dMatrix.setLabel(labels);
return dMatrix;
}
示例8: processInstance
import weka.core.Instance; //導入方法依賴的package包/類
protected static void processInstance(Instance instance, List<Float> dataList, List<Integer> colList ){
Attribute classAttribute = instance.classAttribute();
int classAttrIndex = classAttribute.index();
Enumeration<Attribute> attributeEnumeration = instance.enumerateAttributes();
while (attributeEnumeration.hasMoreElements()) {
Attribute attribute = attributeEnumeration.nextElement();
// System.out.print(attribute.name()+", ");
int attrIndex = attribute.index();
if(attrIndex == classAttrIndex){
continue;
}
double value = instance.value(attribute);
if (value == 0) {
continue;
}
dataList.add((float) value);
if (attrIndex < classAttrIndex) {
colList.add(attrIndex);
}else{
colList.add(attrIndex+1);
}
}
// System.out.println();
}
示例9: scoreInstance
import weka.core.Instance; //導入方法依賴的package包/類
private double scoreInstance(Instance instance) {
// bias
double score = 1 * this.weights[0];
// ignore id and topic and class label
for (int i = 2; i < instance.numAttributes() - 1; i++) {
score += this.weights[i - 1] * instance.value(i);
}
return score;
}
示例10: calculateProbabilityOfOccurence
import weka.core.Instance; //導入方法依賴的package包/類
private double calculateProbabilityOfOccurence(RuleTerm ruleTerm, ArrayList<Instance> dataset, double classification ){
int totalNoInstancesCoveredByRuleTerm = 0;
int totalNoInstancesCoveredByRuleTermWithClassification = 0;
List<Instance> instancesList = new ArrayList<>(dataset);
for (Instance instance : instancesList) {
if(instance.value(ruleTerm.attribute) == ruleTerm.value){
totalNoInstancesCoveredByRuleTerm++;
// check if ruleTerm covered instance for specific classification
if(instance.classValue() == classification){
totalNoInstancesCoveredByRuleTermWithClassification++;
}
}
}
double probabilityOfOccurencesForClassification = (double) totalNoInstancesCoveredByRuleTermWithClassification / (double) totalNoInstancesCoveredByRuleTerm;
return Double.isNaN(probabilityOfOccurencesForClassification) ? 0.0d : probabilityOfOccurencesForClassification;
}
示例11: scaleDownMindists
import weka.core.Instance; //導入方法依賴的package包/類
private static ArrayList<Attribute> scaleDownMindists(Instances previousSet, Instance center){
ArrayList<Attribute> localAtts = new ArrayList<Attribute>();
int attNum = center.numAttributes();
int pos = previousSet.attribute(PerformanceAttName).index();
//traverse each dimension
Enumeration<Instance> enu;
double minDis;
for(int i=0;i<attNum;i++){
if(i==pos)
continue;
enu = previousSet.enumerateInstances();
minDis = Double.MAX_VALUE;
while(enu.hasMoreElements()){
Instance ins = enu.nextElement();
if(!ins.equals(center))
minDis = Math.min((double)((int)(Math.abs(ins.value(i)-center.value(i))*1000))/1000.0, minDis);
}
//now we set the range
Properties p1 = new Properties();
double upper = center.value(i)+minDis, lower=center.value(i)-minDis;
TreeSet<Double> detourSet = new TreeSet<Double>();
detourSet.add(upper);
detourSet.add(lower);
detourSet.add(previousSet.attribute(i).getUpperNumericBound());
detourSet.add(previousSet.attribute(i).getLowerNumericBound());
switch(detourSet.size()){
case 1:
upper=lower=detourSet.first();
break;
case 2:
upper = detourSet.last();
lower = detourSet.first();
break;
case 3:
upper=lower=detourSet.higher(detourSet.first());
break;
default://case 4:
upper=detourSet.lower(detourSet.last());
lower=detourSet.higher(detourSet.first());
break;
}
p1.setProperty("range", "["+String.valueOf(lower)+","+String.valueOf(upper)+"]");
ProtectedProperties prop1 = new ProtectedProperties(p1);
localAtts.add(new Attribute(previousSet.attribute(i).name(), prop1));
}
return localAtts;
}
示例12: scaleDownNeighbordists
import weka.core.Instance; //導入方法依賴的package包/類
private static ArrayList<Attribute> scaleDownNeighbordists(Instances previousSet, Instance center){
ArrayList<Attribute> localAtts = new ArrayList<Attribute>();
int attNum = center.numAttributes();
int pos = -1;
if(previousSet.attribute(PerformanceAttName)!=null)
pos = previousSet.attribute(PerformanceAttName).index();
//traverse each dimension
Enumeration<Instance> enu;
double[] minDists = new double[2];
double val;
for(int i=0;i<attNum;i++){
if(i==pos)
continue;
enu = previousSet.enumerateInstances();
minDists[0] = 1-Double.MAX_VALUE;
minDists[1] = Double.MAX_VALUE;
while(enu.hasMoreElements()){
Instance ins = enu.nextElement();
if(!ins.equals(center)){
val = ins.value(i)-center.value(i);
if(val<0)
minDists[0] = Math.max((double)((int)((ins.value(i)-center.value(i))*1000))/1000.0, minDists[0]);
else
minDists[1] = Math.min((double)((int)((ins.value(i)-center.value(i))*1000))/1000.0, minDists[1]);
}
}
//now we set the range
Properties p1 = new Properties();
double upper = center.value(i)+minDists[1], lower=center.value(i)+minDists[0];
TreeSet<Double> detourSet = new TreeSet<Double>();
detourSet.add(upper);
detourSet.add(lower);
detourSet.add(previousSet.attribute(i).getUpperNumericBound());
detourSet.add(previousSet.attribute(i).getLowerNumericBound());
switch(detourSet.size()){
case 1:
upper=lower=detourSet.first();
break;
case 2:
upper = detourSet.last();
lower = detourSet.first();
break;
case 3:
upper=lower=detourSet.higher(detourSet.first());
break;
default://case 4:
upper=detourSet.lower(detourSet.last());
lower=detourSet.higher(detourSet.first());
break;
}
p1.setProperty("range", "["+String.valueOf(lower)+","+String.valueOf(upper)+"]");
ProtectedProperties prop1 = new ProtectedProperties(p1);
localAtts.add(new Attribute(previousSet.attribute(i).name(), prop1));
}
return localAtts;
}
示例13: scaleDownDetour
import weka.core.Instance; //導入方法依賴的package包/類
public static ArrayList<Attribute> scaleDownDetour(Instances previousSet, Instance center){
ArrayList<Attribute> localAtts = new ArrayList<Attribute>();
int attNum = center.numAttributes();
int pos = previousSet.attribute(PerformanceAttName).index();
//traverse each dimension
Enumeration<Instance> enu;
double minDis;
for(int i=0;i<attNum;i++){
if(i==pos)
continue;
enu = previousSet.enumerateInstances();
minDis = Double.MAX_VALUE;
while(enu.hasMoreElements()){
Instance ins = enu.nextElement();
if(!ins.equals(center))
minDis = Math.min((double)((int)(Math.abs(ins.value(i)-center.value(i))*100))/100.0, minDis);
}
//now we set the range
Properties p1 = new Properties();
double upper = center.value(i)+minDis, lower=center.value(i)-minDis;
TreeSet<Double> detourSet = new TreeSet<Double>();
detourSet.add(upper);
detourSet.add(lower);
detourSet.add(previousSet.attribute(i).getUpperNumericBound());
detourSet.add(previousSet.attribute(i).getLowerNumericBound());
switch(detourSet.size()){
case 1:
upper=lower=detourSet.first();
break;
case 2:
upper = detourSet.last();
lower = detourSet.first();
break;
case 3:
upper=lower=detourSet.higher(detourSet.first());
break;
default://case 4:
upper=detourSet.lower(detourSet.last());
lower=detourSet.higher(detourSet.first());
break;
}
p1.setProperty("range", "["+String.valueOf(lower)+","+String.valueOf(upper)+"]");
ProtectedProperties prop1 = new ProtectedProperties(p1);
localAtts.add(new Attribute(previousSet.attribute(i).name(), prop1));
}
return localAtts;
}
示例14: buildClassifier
import weka.core.Instance; //導入方法依賴的package包/類
@Override
public void buildClassifier(Instances data) throws Exception {
// Initialise training dataset
Attribute classAttribute = data.classAttribute();
classedData = new HashMap<>();
classedDataIndices = new HashMap<>();
for (int c = 0; c < data.numClasses(); c++) {
classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
}
train = new SymbolicSequence[data.numInstances()];
classMap = new String[train.length];
maxLength = 0;
for (int i = 0; i < train.length; i++) {
Instance sample = data.instance(i);
MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
maxLength = Math.max(maxLength, sequence.length);
int shift = (sample.classIndex() == 0) ? 1 : 0;
for (int t = 0; t < sequence.length; t++) {
sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
}
train[i] = new SymbolicSequence(sequence);
String clas = sample.stringValue(classAttribute);
classMap[i] = clas;
classedData.get(clas).add(train[i]);
classedDataIndices.get(clas).add(i);
}
warpingMatrix = new double[maxLength][maxLength];
U = new double[maxLength];
L = new double[maxLength];
U1 = new double[maxLength];
L1 = new double[maxLength];
maxWindow = Math.round(1 * maxLength);
searchResults = new String[maxWindow+1];
nns = new int[maxWindow+1][train.length];
dist = new double[train.length][train.length];
cache = new SequenceStatsCache(train, maxWindow);
lazyUCR = new LazyAssessNNEarlyAbandon[train.length][train.length];
for (int i = 0; i < train.length; i++) {
for (int j = 0; j < train.length; j++) {
lazyUCR[i][j] = new LazyAssessNNEarlyAbandon(cache);
}
}
// Start searching for the best window
searchBestWarpingWindow();
// Saving best windows found
System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}