本文整理匯總了Java中weka.core.FastVector.addElement方法的典型用法代碼示例。如果您正苦於以下問題:Java FastVector.addElement方法的具體用法?Java FastVector.addElement怎麽用?Java FastVector.addElement使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.core.FastVector
的用法示例。
在下文中一共展示了FastVector.addElement方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: makeHeader
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* generates the header
*
* @return the header
*/
private Instances makeHeader() {
FastVector fv = new FastVector();
fv.addElement(new Attribute(TRUE_POS_NAME));
fv.addElement(new Attribute(FALSE_NEG_NAME));
fv.addElement(new Attribute(FALSE_POS_NAME));
fv.addElement(new Attribute(TRUE_NEG_NAME));
fv.addElement(new Attribute(FP_RATE_NAME));
fv.addElement(new Attribute(TP_RATE_NAME));
fv.addElement(new Attribute(PRECISION_NAME));
fv.addElement(new Attribute(RECALL_NAME));
fv.addElement(new Attribute(FALLOUT_NAME));
fv.addElement(new Attribute(FMEASURE_NAME));
fv.addElement(new Attribute(SAMPLE_SIZE_NAME));
fv.addElement(new Attribute(LIFT_NAME));
fv.addElement(new Attribute(THRESHOLD_NAME));
return new Instances(RELATION_NAME, fv, 100);
}
示例2: setInputFormat
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Sets the format of the input instances.
*
* @param instanceInfo an Instances object containing the input instance
* structure (any instances contained in the object are ignored - only the
* structure is required).
* @return true if the outputFormat may be collected immediately
* @throws Exception if a problem occurs setting the input format
*/
public boolean setInputFormat(Instances instanceInfo) throws Exception {
super.setInputFormat(instanceInfo);
FastVector attributes = new FastVector();
int outputClass = -1;
m_SelectedAttributes = determineIndices(instanceInfo.numAttributes());
for (int i = 0; i < m_SelectedAttributes.length; i++) {
int current = m_SelectedAttributes[i];
if (instanceInfo.classIndex() == current) {
outputClass = attributes.size();
}
Attribute keep = (Attribute)instanceInfo.attribute(current).copy();
attributes.addElement(keep);
}
initInputLocators(instanceInfo, m_SelectedAttributes);
Instances outputFormat = new Instances(instanceInfo.relationName(),
attributes, 0);
outputFormat.setClassIndex(outputClass);
setOutputFormat(outputFormat);
return true;
}
示例3: canEstimate
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Checks basic estimation of one attribute of the scheme, for simple non-troublesome
* datasets.
*
* @param attrTypes the types the estimator can work with
* @param classType the class type (NOMINAL, NUMERIC, etc.)
* @return index 0 is true if the test was passed, index 1 is true if test
* was acceptable
*/
protected boolean[] canEstimate(AttrTypes attrTypes, boolean supervised, int classType) {
// supervised is ignored, no supervised estimators used yet
print("basic estimation");
printAttributeSummary(attrTypes, classType);
print("...");
FastVector accepts = new FastVector();
accepts.addElement("nominal");
accepts.addElement("numeric");
accepts.addElement("string");
accepts.addElement("date");
accepts.addElement("relational");
accepts.addElement("not in classpath");
int numTrain = getNumInstances(), numTest = getNumInstances(),
numClasses = 2, missingLevel = 0;
boolean attributeMissing = false, classMissing = false;
int numAtts = 1, attrIndex = 0;
return runBasicTest(attrTypes, numAtts, attrIndex,
classType,
missingLevel, attributeMissing, classMissing,
numTrain, numTest, numClasses,
accepts);
}
示例4: AttributePanel
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* This constructs an attributePanel.
*/
public AttributePanel(Color background) {
m_backgroundColor = background;
setProperties();
this.setBackground(Color.blue);
setVerticalScrollBarPolicy(VERTICAL_SCROLLBAR_ALWAYS);
m_colorList = new FastVector(10);
for (int noa = m_colorList.size(); noa < 10; noa++) {
Color pc = m_DefaultColors[noa % 10];
int ija = noa / 10;
ija *= 2;
for (int j=0;j<ija;j++) {
pc = pc.darker();
}
m_colorList.addElement(pc);
}
}
示例5: buildAttribInstances
import weka.core.FastVector; //導入方法依賴的package包/類
public TrialInstances buildAttribInstances(InferenceRule ir, List allVars) {
Collection allAttribs = VarToAttribMap.convert(allVars, ir);
if (TRACE > 1) out.println("Attribs: "+allAttribs);
FastVector attributes = new FastVector();
WekaInterface.addAllPairs(attributes, allAttribs);
attributes.addElement(new weka.core.Attribute("score"));
int capacity = 30;
TrialInstances data = new TrialInstances("Attribute Ordering Constraints", attributes, capacity);
if (allAttribs.size() <= 1) return data;
for (Iterator i = allTrials.iterator(); i.hasNext();) {
EpisodeCollection tc2 = (EpisodeCollection) i.next();
InferenceRule ir2 = tc2.getRule(solver);
OrderTranslator t = new VarToAttribTranslator(ir2);
t = new OrderTranslator.Compose(t, new FilterTranslator(allAttribs));
addToInstances(data, tc2, t);
}
data.setClassIndex(data.numAttributes() - 1);
return data;
}
示例6: createInstances
import weka.core.FastVector; //導入方法依賴的package包/類
IdentifiedInstances<Element> createInstances() throws IOException {
if (!isBagsInitialized())
initializeBags();
FastVector attrVector = new FastVector(attributes.size());
for (AttributeDefinition ad : attributes)
attrVector.addElement(ad.getAttribute());
IdentifiedInstances<Element> result = new IdentifiedInstances<Element>(name, attrVector, 0);
result.setClassIndex(classAttributeIndex);
return result;
}
示例7: mapStringToModel
import weka.core.FastVector; //導入方法依賴的package包/類
@Override
public Dataset mapStringToModel(JsonRequest request) throws ParseException {
if(request != null && request.getData() != null && request.getData().length > 0)
{
FastVector fvWekaAttributes = new FastVector(2);
FastVector nil = null;
Attribute attr0 = new Attribute("text",nil, 0);
FastVector fv = new FastVector();
for(String nominal : request.getClassVars())
{
fv.addElement(nominal);
}
Attribute attr1 = new Attribute("class", fv,1);
fvWekaAttributes.addElement(attr0);
fvWekaAttributes.addElement(attr1);
Instances ins = new Instances("attr-reln", fvWekaAttributes, request.getData().length);
ins.setClassIndex(1);
for(Text s : request.getData())
{
Instance i = new Instance(2);
i.setValue(attr0, s.getText());
i.setValue(attr1, s.getTclass());
ins.add(i);
}
return new Dataset(ins);
}
return null;
}
示例8: createVariableWekaDataset
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Creates the weka data set for clustering of variables (metabolites)
*
* @param rawData
* Data extracted from selected Raw data files and rows.
* @return Weka library data set
*/
private Instances createVariableWekaDataset(double[][] rawData) {
FastVector attributes = new FastVector();
for (int i = 0; i < this.selectedRawDataFiles.length; i++) {
String varName = "Var" + i;
Attribute var = new Attribute(varName);
attributes.addElement(var);
}
if (clusteringStep.getModule().getClass()
.equals(HierarClusterer.class)) {
Attribute name = new Attribute("name", (FastVector) null);
attributes.addElement(name);
}
Instances data = new Instances("Dataset", attributes, 0);
for (int i = 0; i < selectedRows.length; i++) {
double[] values = new double[data.numAttributes()];
System.arraycopy(rawData[i], 0, values, 0, rawData[0].length);
if (clusteringStep.getModule().getClass()
.equals(HierarClusterer.class)) {
DecimalFormat twoDForm = new DecimalFormat("#.##");
double MZ = Double.valueOf(
twoDForm.format(selectedRows[i].getAverageMZ()));
double RT = Double.valueOf(
twoDForm.format(selectedRows[i].getAverageRT()));
String rowName = "MZ->" + MZ + "/RT->" + RT;
values[data.numAttributes() - 1] = data.attribute("name")
.addStringValue(rowName);
}
Instance inst = new SparseInstance(1.0, values);
data.add(inst);
}
return data;
}
示例9: determineOutputFormat
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Determines the output format based on the input format and returns
* this. In case the output format cannot be returned immediately, i.e.,
* immediateOutputFormat() returns false, then this method will be called
* from batchFinished().
*
* @param inputFormat the input format to base the output format on
* @return the output format
* @throws Exception in case the determination goes wrong
* @see #hasImmediateOutputFormat()
* @see #batchFinished()
*/
protected Instances determineOutputFormat(Instances inputFormat)
throws Exception {
// generate header
FastVector atts = new FastVector();
String prefix = getAlgorithm().getSelectedTag().getReadable();
for (int i = 0; i < getNumComponents(); i++)
atts.addElement(new Attribute(prefix + "_" + (i+1)));
atts.addElement(new Attribute("Class"));
Instances result = new Instances(prefix, atts, 0);
result.setClassIndex(result.numAttributes() - 1);
return result;
}
示例10: canHandleNClasses
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Checks whether nominal schemes can handle more than two classes.
* If a scheme is only designed for two-class problems it should
* throw an appropriate exception for multi-class problems.
*
* @param nominalPredictor if true use nominal predictor attributes
* @param numericPredictor if true use numeric predictor attributes
* @param stringPredictor if true use string predictor attributes
* @param datePredictor if true use date predictor attributes
* @param relationalPredictor if true use relational predictor attributes
* @param multiInstance whether multi-instance is needed
* @param numClasses the number of classes to test
* @return index 0 is true if the test was passed, index 1 is true if test
* was acceptable
*/
protected boolean[] canHandleNClasses(
boolean nominalPredictor,
boolean numericPredictor,
boolean stringPredictor,
boolean datePredictor,
boolean relationalPredictor,
boolean multiInstance,
int numClasses) {
print("more than two class problems");
printAttributeSummary(
nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL);
print("...");
FastVector accepts = new FastVector();
accepts.addElement("number");
accepts.addElement("class");
int numTrain = getNumInstances(), missingLevel = 0;
boolean predictorMissing = false, classMissing = false;
return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
datePredictor, relationalPredictor,
multiInstance,
Attribute.NOMINAL,
missingLevel, predictorMissing, classMissing,
numTrain, numClasses,
accepts);
}
示例11: modifyHeader
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* modifies the header of the Instances and returns the format w/o
* any instances
*
* @param instanceInfo the instances structure to modify
* @return the new structure (w/o instances!)
*/
protected Instances modifyHeader(Instances instanceInfo) {
instanceInfo = new Instances(getInputFormat(), 0); // copy before modifying
Attribute oldAtt = instanceInfo.attribute(m_AttIndex.getIndex());
int [] selection = new int[m_Values.size()];
Iterator iter = m_Values.iterator();
int i = 0;
while (iter.hasNext()) {
selection[i] = oldAtt.indexOfValue(iter.next().toString());
i++;
}
FastVector newVals = new FastVector();
for (i = 0; i < selection.length; i++) {
newVals.addElement(oldAtt.value(selection[i]));
}
instanceInfo.deleteAttributeAt(m_AttIndex.getIndex());
Attribute newAtt = new Attribute(oldAtt.name(), newVals);
newAtt.setWeight(oldAtt.weight());
instanceInfo.insertAttributeAt(newAtt,
m_AttIndex.getIndex());
m_NominalMapping = new int [oldAtt.numValues()];
for (i = 0; i < m_NominalMapping.length; i++) {
boolean found = false;
for (int j = 0; j < selection.length; j++) {
if (selection[j] == i) {
m_NominalMapping[i] = j;
found = true;
break;
}
}
if (!found) {
m_NominalMapping[i] = -1;
}
}
return instanceInfo;
}
示例12: deleteItemSets
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Deletes all item sets that don't have minimum support and have more than maximum support
* @return the reduced set of item sets
* @param maxSupport the maximum support
* @param itemSets the set of item sets to be pruned
* @param minSupport the minimum number of transactions to be covered
*/
public static FastVector deleteItemSets(FastVector itemSets,
int minSupport,
int maxSupport) {
FastVector newVector = new FastVector(itemSets.size());
for (int i = 0; i < itemSets.size(); i++) {
LabeledItemSet current = (LabeledItemSet)itemSets.elementAt(i);
if ((current.m_ruleSupCounter >= minSupport)
&& (current.m_ruleSupCounter <= maxSupport))
newVector.addElement(current);
}
return newVector;
}
示例13: selectElements
import weka.core.FastVector; //導入方法依賴的package包/類
FastVector selectElements(Node item, String sElement) throws Exception {
NodeList children = item.getChildNodes();
FastVector nodelist = new FastVector();
for (int iNode = 0; iNode < children.getLength(); iNode++) {
Node node = children.item(iNode);
if ((node.getNodeType() == Node.ELEMENT_NODE) && node.getNodeName().equals(sElement)) {
nodelist.addElement(node);
}
}
return nodelist;
}
示例14: canHandleZeroTraining
import weka.core.FastVector; //導入方法依賴的package包/類
/**
* Checks whether the scheme can handle zero training instances.
*
* @param nominalPredictor if true use nominal predictor attributes
* @param numericPredictor if true use numeric predictor attributes
* @param stringPredictor if true use string predictor attributes
* @param datePredictor if true use date predictor attributes
* @param relationalPredictor if true use relational predictor attributes
* @param multiInstance whether multi-instance is needed
* @param classType the class type (NUMERIC, NOMINAL, etc.)
* @return index 0 is true if the test was passed, index 1 is true if test
* was acceptable
*/
protected boolean[] canHandleZeroTraining(
boolean nominalPredictor,
boolean numericPredictor,
boolean stringPredictor,
boolean datePredictor,
boolean relationalPredictor,
boolean multiInstance,
int classType) {
print("handle zero training instances");
printAttributeSummary(
nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType);
print("...");
FastVector accepts = new FastVector();
accepts.addElement("train");
accepts.addElement("value");
int numTrain = 0, numClasses = 2, missingLevel = 0;
boolean predictorMissing = false, classMissing = false;
return runBasicTest(
nominalPredictor, numericPredictor, stringPredictor,
datePredictor, relationalPredictor,
multiInstance,
classType,
missingLevel, predictorMissing, classMissing,
numTrain, numClasses,
accepts);
}
示例15: fastVector
import weka.core.FastVector; //導入方法依賴的package包/類
private static final FastVector fastVector(Collection<String> values) {
FastVector result = new FastVector(values.size());
for (String v : values)
result.addElement(v);
return result;
}