當前位置: 首頁>>代碼示例>>Java>>正文


Java Attribute.numValues方法代碼示例

本文整理匯總了Java中weka.core.Attribute.numValues方法的典型用法代碼示例。如果您正苦於以下問題:Java Attribute.numValues方法的具體用法?Java Attribute.numValues怎麽用?Java Attribute.numValues使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Attribute的用法示例。


在下文中一共展示了Attribute.numValues方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: isClassTheMajortiy

import weka.core.Attribute; //導入方法依賴的package包/類
private boolean isClassTheMajortiy(ArrayList<Instance> instances, double classification){
	
	List<Instance> instancesList = new ArrayList<>(instances);
	TreeMap<Double, Double> classificationProbability = new TreeMap<>();
	Attribute classAttribute = instances.get(0).classAttribute();
	
	for (double i = 0; i < classAttribute.numValues(); i++) {
		int matchedClassCount = 0;
		
		for (Instance instance : instancesList) {
			if(instance.classValue() == i){
				matchedClassCount++;
			}
		}
		
		classificationProbability.put(((double) matchedClassCount / (double) instancesList.size()), i);
	}
	
	return (classificationProbability.lastEntry().getValue() == classification);
}
 
開發者ID:thienle2401,項目名稱:G-eRules,代碼行數:21,代碼來源:GeRules.java

示例2: getClasses

import weka.core.Attribute; //導入方法依賴的package包/類
protected static String[] getClasses(Instances instances) {
	Attribute classAttribute = instances.classAttribute();
	String[] result = new String[classAttribute.numValues()];
	for (int i = 0; i < result.length; ++i)
		result[i] = classAttribute.value(i);
	return result;
}
 
開發者ID:Bibliome,項目名稱:alvisnlp,代碼行數:8,代碼來源:PredictionElementClassifier.java

示例3: getMultiDim

import weka.core.Attribute; //導入方法依賴的package包/類
/**
 * Assumptions:(1)Numberic is continuous and has lower/upper bounds; (2) Nominals have domains permutable
 * 
 * @param useMid true if to use the middle point of a subdomain, false if to use a random point within a subdomain
 */
private static Instances getMultiDim(ArrayList<Attribute> atts, int sampleSetSize, boolean useMid){
	
	int L = Math.min(7, Math.max(sampleSetSize, atts.size()));//7 is chosen for no special reason
	double maxMinDist = 0, crntMinDist;//work as the threshold to select the sample set
	ArrayList<Integer>[] setWithMaxMinDist=null;
	//generate L sets of sampleSetSize points
	for(int i=0; i<L; i++){
		ArrayList<Integer>[] setPerm = generateOneSampleSet(sampleSetSize, atts.size());
		//compute the minimum distance minDist between any sample pair for each set
		crntMinDist = minDistForSet(setPerm);
		//select the set with the maximum minDist
		if(crntMinDist>maxMinDist){
			setWithMaxMinDist = setPerm;
			maxMinDist = crntMinDist;
		}
	}
	
	//generate and output the set with the maximum minDist as the result
	
	//first, divide the domain of each attribute into sampleSetSize equal subdomain
	double[][] bounds = new double[atts.size()][sampleSetSize+1];//sampleSetSize+1 to include the lower and upper bounds
	Iterator<Attribute> itr = atts.iterator();
	Attribute crntAttr;
	double pace;
	for(int i=0;i<bounds.length;i++){
		crntAttr = itr.next();
		
		if(crntAttr.isNumeric()){
			bounds[i][0] = crntAttr.getLowerNumericBound();
			bounds[i][sampleSetSize] = crntAttr.getUpperNumericBound();
			pace = (crntAttr.getUpperNumericBound() - crntAttr.getLowerNumericBound())/sampleSetSize;
			for(int j=1;j<sampleSetSize;j++){
				bounds[i][j] = bounds[i][j-1] + pace;
			}
		}else{//crntAttr.isNominal()
			if(crntAttr.numValues()>=sampleSetSize){
				//randomly select among the set
				for(int j=0;j<=sampleSetSize;j++)
					bounds[i][j] = uniRand.nextInt(crntAttr.numValues());//the position of one of the nominal values
			}else{
				//first round-robin
				int lastPart = sampleSetSize%crntAttr.numValues();
				for(int j=0;j<sampleSetSize-lastPart;j++)
					bounds[i][j] = j%crntAttr.numValues();
				//then randomly select
				for(int j=sampleSetSize-lastPart;j<=sampleSetSize;j++)
					bounds[i][j] = uniRand.nextInt(crntAttr.numValues());
			}
		}//nominal attribute
	}//get all subdomains
	
	//second, generate the set according to setWithMaxMinDist
	Instances data = new Instances("InitialSetByLHS", atts, sampleSetSize);
	for(int i=0;i<sampleSetSize;i++){
		double[] vals = new double[atts.size()];
		for(int j=0;j<vals.length;j++){
			if(atts.get(j).isNumeric()){
				vals[j] = useMid?
						(bounds[j][setWithMaxMinDist[j].get(i)]+bounds[j][setWithMaxMinDist[j].get(i)+1])/2:
							bounds[j][setWithMaxMinDist[j].get(i)]+
							(
								(bounds[j][setWithMaxMinDist[j].get(i)+1]-bounds[j][setWithMaxMinDist[j].get(i)])*uniRand.nextDouble()
							);
			}else{//isNominal()
				vals[j] = bounds[j][setWithMaxMinDist[j].get(i)];
			}
		}
		data.add(new DenseInstance(1.0, vals));
	}
	
	//third, return the generated points
	return data;
}
 
開發者ID:zhuyuqing,項目名稱:bestconf,代碼行數:79,代碼來源:LHSSampler.java

示例4: getMultiDim

import weka.core.Attribute; //導入方法依賴的package包/類
/**
 * Assumptions:(1)Numberic is continuous and has lower/upper bounds; (2) Nominals have domains permutable
 * 
 * @param useMid true if to use the middle point of a subdomain, false if to use a random point within a subdomain
 */
public static Instances getMultiDim(ArrayList<Attribute> atts, int sampleSetSize, boolean useMid){
	
	int L = Math.min(7, Math.max(sampleSetSize, atts.size()));//7 is chosen for no special reason
	double maxMinDist = 0, crntMinDist;//work as the threshold to select the sample set
	ArrayList<Integer>[] setWithMaxMinDist=null;
	//generate L sets of sampleSetSize points
	for(int i=0; i<L; i++){
		ArrayList<Integer>[] setPerm = generateOneSampleSet(sampleSetSize, atts.size());
		//compute the minimum distance minDist between any sample pair for each set
		crntMinDist = minDistForSet(setPerm);
		//select the set with the maximum minDist
		if(crntMinDist>maxMinDist){
			setWithMaxMinDist = setPerm;
			maxMinDist = crntMinDist;
		}
	}
	
	//generate and output the set with the maximum minDist as the result
	
	//first, divide the domain of each attribute into sampleSetSize equal subdomain
	double[][] bounds = new double[atts.size()][sampleSetSize+1];//sampleSetSize+1 to include the lower and upper bounds
	Iterator<Attribute> itr = atts.iterator();
	Attribute crntAttr;
	double pace;
	for(int i=0;i<bounds.length;i++){
		crntAttr = itr.next();
		
		if(crntAttr.isNumeric()){
			bounds[i][0] = crntAttr.getLowerNumericBound();
			bounds[i][sampleSetSize] = crntAttr.getUpperNumericBound();
			pace = (crntAttr.getUpperNumericBound() - crntAttr.getLowerNumericBound())/sampleSetSize;
			for(int j=1;j<sampleSetSize;j++){
				bounds[i][j] = bounds[i][j-1] + pace;
			}
		}else{//crntAttr.isNominal()
			if(crntAttr.numValues()>=sampleSetSize){
				//randomly select among the set
				for(int j=0;j<=sampleSetSize;j++)
					bounds[i][j] = uniRand.nextInt(crntAttr.numValues());//the position of one of the nominal values
			}else{
				//first round-robin
				int lastPart = sampleSetSize%crntAttr.numValues();
				for(int j=0;j<sampleSetSize-lastPart;j++)
					bounds[i][j] = j%crntAttr.numValues();
				//then randomly select
				for(int j=sampleSetSize-lastPart;j<=sampleSetSize;j++)
					bounds[i][j] = uniRand.nextInt(crntAttr.numValues());
			}
		}//nominal attribute
	}//get all subdomains
	
	//second, generate the set according to setWithMaxMinDist
	Instances data = new Instances("InitialSetByLHS", atts, sampleSetSize);
	for(int i=0;i<sampleSetSize;i++){
		double[] vals = new double[atts.size()];
		for(int j=0;j<vals.length;j++){
			if(atts.get(j).isNumeric()){
				vals[j] = useMid?
						(bounds[j][setWithMaxMinDist[j].get(i)]+bounds[j][setWithMaxMinDist[j].get(i)+1])/2:
							bounds[j][setWithMaxMinDist[j].get(i)]+
							(
								(bounds[j][setWithMaxMinDist[j].get(i)+1]-bounds[j][setWithMaxMinDist[j].get(i)])*uniRand.nextDouble()
							);
			}else{//isNominal()
				vals[j] = bounds[j][setWithMaxMinDist[j].get(i)];
			}
		}
		data.add(new DenseInstance(1.0, vals));
	}
	
	//third, return the generated points
	return data;
}
 
開發者ID:zhuyuqing,項目名稱:bestconf,代碼行數:79,代碼來源:LHSInitializer.java


注:本文中的weka.core.Attribute.numValues方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。