本文整理匯總了Java中weka.classifiers.Classifier.toString方法的典型用法代碼示例。如果您正苦於以下問題:Java Classifier.toString方法的具體用法?Java Classifier.toString怎麽用?Java Classifier.toString使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.classifiers.Classifier
的用法示例。
在下文中一共展示了Classifier.toString方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: testAggregatingAggregateableClassifiers
import weka.classifiers.Classifier; //導入方法依賴的package包/類
@Test
public void testAggregatingAggregateableClassifiers() throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
WekaClassifierMapTask task = setupAggregateableBatchClassifier();
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c1 = task.getClassifier();
String c1S = c1.toString();
task = setupAggregateableBatchClassifier();
task.setUseReservoirSamplingWhenBatchLearning(true);
task.setReservoirSampleSize(75);
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c2 = task.getClassifier();
String c2S = c2.toString();
// different classifiers
assertFalse(c1S.equals(c2S));
WekaClassifierReduceTask reduce = new WekaClassifierReduceTask();
List<Classifier> toAgg = new ArrayList<Classifier>();
toAgg.add(c1);
toAgg.add(c2);
Classifier aggregated = reduce.aggregate(toAgg);
String aggregatedS = aggregated.toString();
// aggregated classifier differs from both base classifier
assertFalse(aggregatedS.equals(c1S));
assertFalse(aggregatedS.equals(c2S));
}
示例2: testAggregatingNonAggregateableClassifiers
import weka.classifiers.Classifier; //導入方法依賴的package包/類
@Test
public void testAggregatingNonAggregateableClassifiers() throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
WekaClassifierMapTask task = setupBatchClassifier();
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c1 = task.getClassifier();
String c1S = c1.toString();
task = setupBatchClassifier();
task.setUseReservoirSamplingWhenBatchLearning(true);
task.setReservoirSampleSize(75);
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c2 = task.getClassifier();
String c2S = c2.toString();
// different classifiers
assertFalse(c1S.equals(c2S));
WekaClassifierReduceTask reduce = new WekaClassifierReduceTask();
List<Classifier> toAgg = new ArrayList<Classifier>();
toAgg.add(c1);
toAgg.add(c2);
Classifier aggregated = reduce.aggregate(toAgg);
assertTrue(aggregated instanceof Vote);
}
示例3: testAggregatingAggregateableClassifiersForceVote
import weka.classifiers.Classifier; //導入方法依賴的package包/類
@Test
public void testAggregatingAggregateableClassifiersForceVote()
throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
WekaClassifierMapTask task = setupAggregateableBatchClassifier();
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c1 = task.getClassifier();
String c1S = c1.toString();
task = setupAggregateableBatchClassifier();
task.setUseReservoirSamplingWhenBatchLearning(true);
task.setReservoirSampleSize(75);
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c2 = task.getClassifier();
String c2S = c2.toString();
// different classifiers
assertFalse(c1S.equals(c2S));
WekaClassifierReduceTask reduce = new WekaClassifierReduceTask();
List<Classifier> toAgg = new ArrayList<Classifier>();
toAgg.add(c1);
toAgg.add(c2);
Classifier aggregated = reduce.aggregate(toAgg, null, true);
assertTrue(aggregated instanceof Vote);
}
示例4: testAggregatingWithMinTrainingFraction
import weka.classifiers.Classifier; //導入方法依賴的package包/類
@Test
public void testAggregatingWithMinTrainingFraction() throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
WekaClassifierMapTask task = setupAggregateableBatchClassifier();
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c1 = task.getClassifier();
String c1S = c1.toString();
task = setupAggregateableBatchClassifier();
task.setUseReservoirSamplingWhenBatchLearning(true);
task.setReservoirSampleSize(75);
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c2 = task.getClassifier();
String c2S = c2.toString();
// different classifiers
assertFalse(c1S.equals(c2S));
task = setupAggregateableBatchClassifier();
task.setUseReservoirSamplingWhenBatchLearning(true);
task.setReservoirSampleSize(60);
task.setup(new Instances(train, 0));
for (int i = 0; i < train.numInstances(); i++) {
task.processInstance(train.instance(i));
}
task.finalizeTask();
Classifier c3 = task.getClassifier();
WekaClassifierReduceTask reduce = new WekaClassifierReduceTask();
List<Classifier> toAgg = new ArrayList<Classifier>();
toAgg.add(c1);
toAgg.add(c2);
toAgg.add(c3);
reduce.setMinTrainingFraction(0.5);
List<Integer> numTraining = new ArrayList<Integer>();
numTraining.add(150);
numTraining.add(75);
numTraining.add(60);
Classifier aggregated = reduce.aggregate(toAgg, numTraining, false);
assertFalse(aggregated instanceof Vote);
List<Integer> discarded = reduce.getDiscarded();
assertTrue(discarded != null);
// should be one classifier discarded (< minTrainingFraction)
assertTrue(discarded.size() == 1);
}