本文整理匯總了Java中smile.clustering.KMeans.centroids方法的典型用法代碼示例。如果您正苦於以下問題:Java KMeans.centroids方法的具體用法?Java KMeans.centroids怎麽用?Java KMeans.centroids使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類smile.clustering.KMeans
的用法示例。
在下文中一共展示了KMeans.centroids方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: testCPU
import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
* Test of learn method, of class GaussianProcessRegression.
*/
@Test
public void testCPU() {
System.out.println("CPU");
ArffParser parser = new ArffParser();
parser.setResponseIndex(6);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
Math.standardize(datax);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double sparseRSS30 = 0.0;
double nystromRSS30 = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(47.02), 0.1);
KMeans kmeans = new KMeans(trainx, 30, 10);
double[][] centers = kmeans.centroids();
double r0 = 0.0;
for (int l = 0; l < centers.length; l++) {
for (int j = 0; j < l; j++) {
r0 += Math.distance(centers[l], centers[j]);
}
}
r0 /= (2 * centers.length);
System.out.println("Kernel width = " + r0);
GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
GaussianProcessRegression<double[]> nystrom30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1, true);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rkhs.predict(testx[j]);
rss += r * r;
r = testy[j] - sparse30.predict(testx[j]);
sparseRSS30 += r * r;
r = testy[j] - nystrom30.predict(testx[j]);
nystromRSS30 += r * r;
}
}
System.out.println("Regular 10-CV MSE = " + rss / n);
System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
System.out.println("Nystrom (30) 10-CV MSE = " + nystromRSS30 / n);
} catch (Exception ex) {
ex.printStackTrace();
}
}
示例2: test2DPlanes
import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
* Test of learn method, of class GaussianProcessRegression.
*/
@Test
public void test2DPlanes() {
System.out.println("2dplanes");
ArffParser parser = new ArffParser();
parser.setResponseIndex(10);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/2dplanes.arff"));
double[][] x = data.toArray(new double[data.size()][]);
double[] y = data.toArray(new double[data.size()]);
int[] perm = Math.permutate(x.length);
double[][] datax = new double[4000][];
double[] datay = new double[datax.length];
for (int i = 0; i < datax.length; i++) {
datax[i] = x[perm[i]];
datay[i] = y[perm[i]];
}
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double sparseRSS30 = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(34.866), 0.1);
KMeans kmeans = new KMeans(trainx, 30, 10);
double[][] centers = kmeans.centroids();
double r0 = 0.0;
for (int l = 0; l < centers.length; l++) {
for (int j = 0; j < l; j++) {
r0 += Math.distance(centers[l], centers[j]);
}
}
r0 /= (2 * centers.length);
System.out.println("Kernel width = " + r0);
GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rkhs.predict(testx[j]);
rss += r * r;
r = testy[j] - sparse30.predict(testx[j]);
sparseRSS30 += r * r;
}
}
System.out.println("Regular 10-CV MSE = " + rss / n);
System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例3: testAilerons
import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
* Test of learn method, of class GaussianProcessRegression.
*/
@Test
public void testAilerons() {
System.out.println("ailerons");
ArffParser parser = new ArffParser();
parser.setResponseIndex(40);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/ailerons.arff"));
double[][] x = data.toArray(new double[data.size()][]);
Math.standardize(x);
double[] y = data.toArray(new double[data.size()]);
for (int i = 0; i < y.length; i++) {
y[i] *= 10000;
}
int[] perm = Math.permutate(x.length);
double[][] datax = new double[4000][];
double[] datay = new double[datax.length];
for (int i = 0; i < datax.length; i++) {
datax[i] = x[perm[i]];
datay[i] = y[perm[i]];
}
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double sparseRSS30 = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(183.96), 0.1);
KMeans kmeans = new KMeans(trainx, 30, 10);
double[][] centers = kmeans.centroids();
double r0 = 0.0;
for (int l = 0; l < centers.length; l++) {
for (int j = 0; j < l; j++) {
r0 += Math.distance(centers[l], centers[j]);
}
}
r0 /= (2 * centers.length);
System.out.println("Kernel width = " + r0);
GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rkhs.predict(testx[j]);
rss += r * r;
r = testy[j] - sparse30.predict(testx[j]);
sparseRSS30 += r * r;
}
}
System.out.println("Regular 10-CV MSE = " + rss / n);
System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例4: testBank32nh
import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
* Test of learn method, of class GaussianProcessRegression.
*/
@Test
public void testBank32nh() {
System.out.println("bank32nh");
ArffParser parser = new ArffParser();
parser.setResponseIndex(32);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/bank32nh.arff"));
double[] y = data.toArray(new double[data.size()]);
double[][] x = data.toArray(new double[data.size()][]);
Math.standardize(x);
int[] perm = Math.permutate(x.length);
double[][] datax = new double[4000][];
double[] datay = new double[datax.length];
for (int i = 0; i < datax.length; i++) {
datax[i] = x[perm[i]];
datay[i] = y[perm[i]];
}
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double sparseRSS30 = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(55.3), 0.1);
KMeans kmeans = new KMeans(trainx, 30, 10);
double[][] centers = kmeans.centroids();
double r0 = 0.0;
for (int l = 0; l < centers.length; l++) {
for (int j = 0; j < l; j++) {
r0 += Math.distance(centers[l], centers[j]);
}
}
r0 /= (2 * centers.length);
System.out.println("Kernel width = " + r0);
GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rkhs.predict(testx[j]);
rss += r * r;
r = testy[j] - sparse30.predict(testx[j]);
sparseRSS30 += r * r;
}
}
System.out.println("Regular 10-CV MSE = " + rss / n);
System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例5: testPuma8nh
import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
* Test of learn method, of class GaussianProcessRegression.
*/
@Test
public void testPuma8nh() {
System.out.println("puma8nh");
ArffParser parser = new ArffParser();
parser.setResponseIndex(8);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/puma8nh.arff"));
double[] y = data.toArray(new double[data.size()]);
double[][] x = data.toArray(new double[data.size()][]);
int[] perm = Math.permutate(x.length);
double[][] datax = new double[4000][];
double[] datay = new double[datax.length];
for (int i = 0; i < datax.length; i++) {
datax[i] = x[perm[i]];
datay[i] = y[perm[i]];
}
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double sparseRSS30 = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(38.63), 0.1);
KMeans kmeans = new KMeans(trainx, 30, 10);
double[][] centers = kmeans.centroids();
double r0 = 0.0;
for (int l = 0; l < centers.length; l++) {
for (int j = 0; j < l; j++) {
r0 += Math.distance(centers[l], centers[j]);
}
}
r0 /= (2 * centers.length);
System.out.println("Kernel width = " + r0);
GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rkhs.predict(testx[j]);
rss += r * r;
r = testy[j] - sparse30.predict(testx[j]);
sparseRSS30 += r * r;
}
}
System.out.println("Regular 10-CV MSE = " + rss / n);
System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例6: testKin8nm
import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
* Test of learn method, of class GaussianProcessRegression.
*/
@Test
public void testKin8nm() {
System.out.println("kin8nm");
ArffParser parser = new ArffParser();
parser.setResponseIndex(8);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/kin8nm.arff"));
double[] y = data.toArray(new double[data.size()]);
double[][] x = data.toArray(new double[data.size()][]);
int[] perm = Math.permutate(x.length);
double[][] datax = new double[4000][];
double[] datay = new double[datax.length];
for (int i = 0; i < datax.length; i++) {
datax[i] = x[perm[i]];
datay[i] = y[perm[i]];
}
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double sparseRSS30 = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(34.97), 0.1);
KMeans kmeans = new KMeans(trainx, 30, 10);
double[][] centers = kmeans.centroids();
double r0 = 0.0;
for (int l = 0; l < centers.length; l++) {
for (int j = 0; j < l; j++) {
r0 += Math.distance(centers[l], centers[j]);
}
}
r0 /= (2 * centers.length);
System.out.println("Kernel width = " + r0);
GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rkhs.predict(testx[j]);
rss += r * r;
r = testy[j] - sparse30.predict(testx[j]);
sparseRSS30 += r * r;
}
}
System.out.println("Regular 10-CV MSE = " + rss / n);
System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
} catch (Exception ex) {
System.err.println(ex);
}
}