當前位置: 首頁>>代碼示例>>Java>>正文


Java KMeans.centroids方法代碼示例

本文整理匯總了Java中smile.clustering.KMeans.centroids方法的典型用法代碼示例。如果您正苦於以下問題:Java KMeans.centroids方法的具體用法?Java KMeans.centroids怎麽用?Java KMeans.centroids使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在smile.clustering.KMeans的用法示例。


在下文中一共展示了KMeans.centroids方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: testCPU

import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
 * Test of learn method, of class GaussianProcessRegression.
 */
@Test
public void testCPU() {
    System.out.println("CPU");
    ArffParser parser = new ArffParser();
    parser.setResponseIndex(6);
    try {
        AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
        double[] datay = data.toArray(new double[data.size()]);
        double[][] datax = data.toArray(new double[data.size()][]);
        Math.standardize(datax);
        
        int n = datax.length;
        int k = 10;

        CrossValidation cv = new CrossValidation(n, k);
        double rss = 0.0;
        double sparseRSS30 = 0.0;
        double nystromRSS30 = 0.0;
        for (int i = 0; i < k; i++) {
            double[][] trainx = Math.slice(datax, cv.train[i]);
            double[] trainy = Math.slice(datay, cv.train[i]);
            double[][] testx = Math.slice(datax, cv.test[i]);
            double[] testy = Math.slice(datay, cv.test[i]);

            GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(47.02), 0.1);

            KMeans kmeans = new KMeans(trainx, 30, 10);
            double[][] centers = kmeans.centroids();
            double r0 = 0.0;
            for (int l = 0; l < centers.length; l++) {
                for (int j = 0; j < l; j++) {
                    r0 += Math.distance(centers[l], centers[j]);
                }
            }
            r0 /= (2 * centers.length);
            System.out.println("Kernel width = " + r0);
            GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);
            GaussianProcessRegression<double[]> nystrom30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1, true);

            for (int j = 0; j < testx.length; j++) {
                double r = testy[j] - rkhs.predict(testx[j]);
                rss += r * r;
                
                r = testy[j] - sparse30.predict(testx[j]);
                sparseRSS30 += r * r;

                r = testy[j] - nystrom30.predict(testx[j]);
                nystromRSS30 += r * r;
            }
        }

        System.out.println("Regular 10-CV MSE = " + rss / n);
        System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
        System.out.println("Nystrom (30) 10-CV MSE = " + nystromRSS30 / n);
     } catch (Exception ex) {
        ex.printStackTrace();
     }
}
 
開發者ID:takun2s,項目名稱:smile_1.5.0_java7,代碼行數:62,代碼來源:GaussianProcessRegressionTest.java

示例2: test2DPlanes

import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
 * Test of learn method, of class GaussianProcessRegression.
 */
@Test
public void test2DPlanes() {
    System.out.println("2dplanes");
    ArffParser parser = new ArffParser();
    parser.setResponseIndex(10);
    try {
        AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/2dplanes.arff"));
        double[][] x = data.toArray(new double[data.size()][]);
        double[] y = data.toArray(new double[data.size()]);

        int[] perm = Math.permutate(x.length);
        double[][] datax = new double[4000][];
        double[] datay = new double[datax.length];
        for (int i = 0; i < datax.length; i++) {
            datax[i] = x[perm[i]];
            datay[i] = y[perm[i]];
        }

        int n = datax.length;
        int k = 10;

        CrossValidation cv = new CrossValidation(n, k);
        double rss = 0.0;
        double sparseRSS30 = 0.0;
        for (int i = 0; i < k; i++) {
            double[][] trainx = Math.slice(datax, cv.train[i]);
            double[] trainy = Math.slice(datay, cv.train[i]);
            double[][] testx = Math.slice(datax, cv.test[i]);
            double[] testy = Math.slice(datay, cv.test[i]);

            GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(34.866), 0.1);

            KMeans kmeans = new KMeans(trainx, 30, 10);
            double[][] centers = kmeans.centroids();
            double r0 = 0.0;
            for (int l = 0; l < centers.length; l++) {
                for (int j = 0; j < l; j++) {
                    r0 += Math.distance(centers[l], centers[j]);
                }
            }
            r0 /= (2 * centers.length);
            System.out.println("Kernel width = " + r0);
            GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);

            for (int j = 0; j < testx.length; j++) {
                double r = testy[j] - rkhs.predict(testx[j]);
                rss += r * r;
                
                r = testy[j] - sparse30.predict(testx[j]);
                sparseRSS30 += r * r;
            }
        }

        System.out.println("Regular 10-CV MSE = " + rss / n);
        System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
     } catch (Exception ex) {
         System.err.println(ex);
     }
}
 
開發者ID:takun2s,項目名稱:smile_1.5.0_java7,代碼行數:63,代碼來源:GaussianProcessRegressionTest.java

示例3: testAilerons

import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
 * Test of learn method, of class GaussianProcessRegression.
 */
@Test
public void testAilerons() {
    System.out.println("ailerons");
    ArffParser parser = new ArffParser();
    parser.setResponseIndex(40);
    try {
        AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/ailerons.arff"));
        double[][] x = data.toArray(new double[data.size()][]);
        Math.standardize(x);

        double[] y = data.toArray(new double[data.size()]);
        for (int i = 0; i < y.length; i++) {
            y[i] *= 10000;
        }

        int[] perm = Math.permutate(x.length);
        double[][] datax = new double[4000][];
        double[] datay = new double[datax.length];
        for (int i = 0; i < datax.length; i++) {
            datax[i] = x[perm[i]];
            datay[i] = y[perm[i]];
        }

        int n = datax.length;
        int k = 10;

        CrossValidation cv = new CrossValidation(n, k);
        double rss = 0.0;
        double sparseRSS30 = 0.0;
        for (int i = 0; i < k; i++) {
            double[][] trainx = Math.slice(datax, cv.train[i]);
            double[] trainy = Math.slice(datay, cv.train[i]);
            double[][] testx = Math.slice(datax, cv.test[i]);
            double[] testy = Math.slice(datay, cv.test[i]);

            GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(183.96), 0.1);

            KMeans kmeans = new KMeans(trainx, 30, 10);
            double[][] centers = kmeans.centroids();
            double r0 = 0.0;
            for (int l = 0; l < centers.length; l++) {
                for (int j = 0; j < l; j++) {
                    r0 += Math.distance(centers[l], centers[j]);
                }
            }
            r0 /= (2 * centers.length);
            System.out.println("Kernel width = " + r0);
            GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);

            for (int j = 0; j < testx.length; j++) {
                double r = testy[j] - rkhs.predict(testx[j]);
                rss += r * r;
                
                r = testy[j] - sparse30.predict(testx[j]);
                sparseRSS30 += r * r;
            }
        }

        System.out.println("Regular 10-CV MSE = " + rss / n);
        System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
     } catch (Exception ex) {
         System.err.println(ex);
     }
}
 
開發者ID:takun2s,項目名稱:smile_1.5.0_java7,代碼行數:68,代碼來源:GaussianProcessRegressionTest.java

示例4: testBank32nh

import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
 * Test of learn method, of class GaussianProcessRegression.
 */
@Test
public void testBank32nh() {
    System.out.println("bank32nh");
    ArffParser parser = new ArffParser();
    parser.setResponseIndex(32);
    try {
        AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/bank32nh.arff"));
        double[] y = data.toArray(new double[data.size()]);
        double[][] x = data.toArray(new double[data.size()][]);
        Math.standardize(x);

        int[] perm = Math.permutate(x.length);
        double[][] datax = new double[4000][];
        double[] datay = new double[datax.length];
        for (int i = 0; i < datax.length; i++) {
            datax[i] = x[perm[i]];
            datay[i] = y[perm[i]];
        }

        int n = datax.length;
        int k = 10;

        CrossValidation cv = new CrossValidation(n, k);
        double rss = 0.0;
        double sparseRSS30 = 0.0;
        for (int i = 0; i < k; i++) {
            double[][] trainx = Math.slice(datax, cv.train[i]);
            double[] trainy = Math.slice(datay, cv.train[i]);
            double[][] testx = Math.slice(datax, cv.test[i]);
            double[] testy = Math.slice(datay, cv.test[i]);

            GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(55.3), 0.1);

            KMeans kmeans = new KMeans(trainx, 30, 10);
            double[][] centers = kmeans.centroids();
            double r0 = 0.0;
            for (int l = 0; l < centers.length; l++) {
                for (int j = 0; j < l; j++) {
                    r0 += Math.distance(centers[l], centers[j]);
                }
            }
            r0 /= (2 * centers.length);
            System.out.println("Kernel width = " + r0);
            GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);

            for (int j = 0; j < testx.length; j++) {
                double r = testy[j] - rkhs.predict(testx[j]);
                rss += r * r;
                
                r = testy[j] - sparse30.predict(testx[j]);
                sparseRSS30 += r * r;
            }
        }

        System.out.println("Regular 10-CV MSE = " + rss / n);
        System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
     } catch (Exception ex) {
         System.err.println(ex);
     }
}
 
開發者ID:takun2s,項目名稱:smile_1.5.0_java7,代碼行數:64,代碼來源:GaussianProcessRegressionTest.java

示例5: testPuma8nh

import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
 * Test of learn method, of class GaussianProcessRegression.
 */
@Test
public void testPuma8nh() {
    System.out.println("puma8nh");
    ArffParser parser = new ArffParser();
    parser.setResponseIndex(8);
    try {
        AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/puma8nh.arff"));
        double[] y = data.toArray(new double[data.size()]);
        double[][] x = data.toArray(new double[data.size()][]);

        int[] perm = Math.permutate(x.length);
        double[][] datax = new double[4000][];
        double[] datay = new double[datax.length];
        for (int i = 0; i < datax.length; i++) {
            datax[i] = x[perm[i]];
            datay[i] = y[perm[i]];
        }

        int n = datax.length;
        int k = 10;

        CrossValidation cv = new CrossValidation(n, k);
        double rss = 0.0;
        double sparseRSS30 = 0.0;
        for (int i = 0; i < k; i++) {
            double[][] trainx = Math.slice(datax, cv.train[i]);
            double[] trainy = Math.slice(datay, cv.train[i]);
            double[][] testx = Math.slice(datax, cv.test[i]);
            double[] testy = Math.slice(datay, cv.test[i]);

            GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(38.63), 0.1);

            KMeans kmeans = new KMeans(trainx, 30, 10);
            double[][] centers = kmeans.centroids();
            double r0 = 0.0;
            for (int l = 0; l < centers.length; l++) {
                for (int j = 0; j < l; j++) {
                    r0 += Math.distance(centers[l], centers[j]);
                }
            }
            r0 /= (2 * centers.length);
            System.out.println("Kernel width = " + r0);
            GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);

            for (int j = 0; j < testx.length; j++) {
                double r = testy[j] - rkhs.predict(testx[j]);
                rss += r * r;
                
                r = testy[j] - sparse30.predict(testx[j]);
                sparseRSS30 += r * r;
            }
        }

        System.out.println("Regular 10-CV MSE = " + rss / n);
        System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
     } catch (Exception ex) {
         System.err.println(ex);
     }
}
 
開發者ID:takun2s,項目名稱:smile_1.5.0_java7,代碼行數:63,代碼來源:GaussianProcessRegressionTest.java

示例6: testKin8nm

import smile.clustering.KMeans; //導入方法依賴的package包/類
/**
 * Test of learn method, of class GaussianProcessRegression.
 */
@Test
public void testKin8nm() {
    System.out.println("kin8nm");
    ArffParser parser = new ArffParser();
    parser.setResponseIndex(8);
    try {
        AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/kin8nm.arff"));
        double[] y = data.toArray(new double[data.size()]);
        double[][] x = data.toArray(new double[data.size()][]);

        int[] perm = Math.permutate(x.length);
        double[][] datax = new double[4000][];
        double[] datay = new double[datax.length];
        for (int i = 0; i < datax.length; i++) {
            datax[i] = x[perm[i]];
            datay[i] = y[perm[i]];
        }

        int n = datax.length;
        int k = 10;

        CrossValidation cv = new CrossValidation(n, k);
        double rss = 0.0;
        double sparseRSS30 = 0.0;
        for (int i = 0; i < k; i++) {
            double[][] trainx = Math.slice(datax, cv.train[i]);
            double[] trainy = Math.slice(datay, cv.train[i]);
            double[][] testx = Math.slice(datax, cv.test[i]);
            double[] testy = Math.slice(datay, cv.test[i]);

            GaussianProcessRegression<double[]> rkhs = new GaussianProcessRegression<>(trainx, trainy, new GaussianKernel(34.97), 0.1);

            KMeans kmeans = new KMeans(trainx, 30, 10);
            double[][] centers = kmeans.centroids();
            double r0 = 0.0;
            for (int l = 0; l < centers.length; l++) {
                for (int j = 0; j < l; j++) {
                    r0 += Math.distance(centers[l], centers[j]);
                }
            }
            r0 /= (2 * centers.length);
            System.out.println("Kernel width = " + r0);
            GaussianProcessRegression<double[]> sparse30 = new GaussianProcessRegression<>(trainx, trainy, centers, new GaussianKernel(r0), 0.1);

            for (int j = 0; j < testx.length; j++) {
                double r = testy[j] - rkhs.predict(testx[j]);
                rss += r * r;
                
                r = testy[j] - sparse30.predict(testx[j]);
                sparseRSS30 += r * r;
            }
        }

        System.out.println("Regular 10-CV MSE = " + rss / n);
        System.out.println("Sparse (30) 10-CV MSE = " + sparseRSS30 / n);
     } catch (Exception ex) {
         System.err.println(ex);
     }
}
 
開發者ID:takun2s,項目名稱:smile_1.5.0_java7,代碼行數:63,代碼來源:GaussianProcessRegressionTest.java


注:本文中的smile.clustering.KMeans.centroids方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。