當前位置: 首頁>>代碼示例>>Java>>正文


Java Nd4j.hstack方法代碼示例

本文整理匯總了Java中org.nd4j.linalg.factory.Nd4j.hstack方法的典型用法代碼示例。如果您正苦於以下問題:Java Nd4j.hstack方法的具體用法?Java Nd4j.hstack怎麽用?Java Nd4j.hstack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.nd4j.linalg.factory.Nd4j的用法示例。


在下文中一共展示了Nd4j.hstack方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getTrainingData

import org.nd4j.linalg.factory.Nd4j; //導入方法依賴的package包/類
@Override
public FederatedDataSet getTrainingData() {
    Random rand = new Random(seed);
    double[] sum = new double[N_SAMPLES];
    double[] input1 = new double[N_SAMPLES];
    double[] input2 = new double[N_SAMPLES];
    for (int i = 0; i < N_SAMPLES; i++) {
        input1[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * rand.nextDouble();
        input2[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * rand.nextDouble();
        sum[i] = input1[i] + input2[i];
    }
    INDArray inputNDArray1 = Nd4j.create(input1, new int[]{N_SAMPLES, 1});
    INDArray inputNDArray2 = Nd4j.create(input2, new int[]{N_SAMPLES, 1});
    INDArray inputNDArray = Nd4j.hstack(inputNDArray1, inputNDArray2);
    INDArray outPut = Nd4j.create(sum, new int[]{N_SAMPLES, 1});
    DataSet dataSet = new DataSet(inputNDArray, outPut);
    dataSet.shuffle();
    return new FederatedDataSetImpl(dataSet);
}
 
開發者ID:mccorby,項目名稱:FederatedAndroidTrainer,代碼行數:20,代碼來源:SumDataSource.java

示例2: getTestData

import org.nd4j.linalg.factory.Nd4j; //導入方法依賴的package包/類
@Override
public FederatedDataSet getTestData() {
    Random rand = new Random(seed);
    int numSamples = N_SAMPLES/10;
    double[] sum = new double[numSamples];
    double[] input1 = new double[numSamples];
    double[] input2 = new double[numSamples];
    for (int i = 0; i < numSamples; i++) {
        input1[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * rand.nextDouble();
        input2[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * rand.nextDouble();
        sum[i] = input1[i] + input2[i];
    }
    INDArray inputNDArray1 = Nd4j.create(input1, new int[]{numSamples, 1});
    INDArray inputNDArray2 = Nd4j.create(input2, new int[]{numSamples, 1});
    INDArray inputNDArray = Nd4j.hstack(inputNDArray1, inputNDArray2);
    INDArray outPut = Nd4j.create(sum, new int[]{numSamples, 1});
    return new FederatedDataSetImpl(new DataSet(inputNDArray, outPut));
}
 
開發者ID:mccorby,項目名稱:FederatedAndroidTrainer,代碼行數:19,代碼來源:SumDataSource.java

示例3: getTrainingData

import org.nd4j.linalg.factory.Nd4j; //導入方法依賴的package包/類
private static DataSetIterator getTrainingData(int batchSize, Random rand){
    double [] sum = new double[nSamples];
    double [] input1 = new double[nSamples];
    double [] input2 = new double[nSamples];
    for (int i= 0; i< nSamples; i++) {
        int MIN_RANGE = 0;
        int MAX_RANGE = 3;
        input1[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * rand.nextDouble();
        input2[i] =  MIN_RANGE + (MAX_RANGE - MIN_RANGE) * rand.nextDouble();
        sum[i] = input1[i] + input2[i];
    }
    INDArray inputNDArray1 = Nd4j.create(input1, new int[]{nSamples,1});
    INDArray inputNDArray2 = Nd4j.create(input2, new int[]{nSamples,1});
    INDArray inputNDArray = Nd4j.hstack(inputNDArray1,inputNDArray2);
    INDArray outPut = Nd4j.create(sum, new int[]{nSamples, 1});
    DataSet dataSet = new DataSet(inputNDArray, outPut);
    List<DataSet> listDs = dataSet.asList();
    Collections.shuffle(listDs,rng);
    return new ListDataSetIterator(listDs,batchSize);

}
 
開發者ID:IsaacChanghau,項目名稱:NeuralNetworksLite,代碼行數:22,代碼來源:RegressionSum.java


注:本文中的org.nd4j.linalg.factory.Nd4j.hstack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。