當前位置: 首頁>>代碼示例>>Java>>正文


Java DataTypeUtil.setDTypeForContext方法代碼示例

本文整理匯總了Java中org.nd4j.linalg.api.buffer.util.DataTypeUtil.setDTypeForContext方法的典型用法代碼示例。如果您正苦於以下問題:Java DataTypeUtil.setDTypeForContext方法的具體用法?Java DataTypeUtil.setDTypeForContext怎麽用?Java DataTypeUtil.setDTypeForContext使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.nd4j.linalg.api.buffer.util.DataTypeUtil的用法示例。


在下文中一共展示了DataTypeUtil.setDTypeForContext方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: randomStrangeTest

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void randomStrangeTest() {
    DataBuffer.Type type = Nd4j.dataType();
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);

    int a=9;
    int b=2;
    int[] shapes = new int[a];
    for (int i = 0; i < a; i++) {
        shapes[i] = b;
    }
    INDArray c = Nd4j.linspace(1, (int) (100 * 1 + 1 + 2), (int) Math.pow(b, a)).reshape(shapes);
    c=c.sum(0);
    double[] d = c.data().asDouble();
    System.out.println("d: " + Arrays.toString(d));

    DataTypeUtil.setDTypeForContext(type);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:19,代碼來源:SporadicTests.java

示例2: testNorm2Double

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testNorm2Double() {
    DataBuffer.Type initialType = Nd4j.dataType();
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    INDArray n = Nd4j.create(new double[] {1, 2, 3, 4});
    double assertion = 5.47722557505;
    double norm3 = n.norm2Number().doubleValue();
    assertEquals(getFailureMessage(), assertion, norm3, 1e-1);

    INDArray row = Nd4j.create(new double[] {1, 2, 3, 4}, new int[] {2, 2});
    INDArray row1 = row.getRow(1);
    double norm2 = row1.norm2Number().doubleValue();
    double assertion2 = 5.0f;
    assertEquals(getFailureMessage(), assertion2, norm2, 1e-1);
    DataTypeUtil.setDTypeForContext(initialType);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:17,代碼來源:Nd4jTestsC.java

示例3: testRectifiedLinearDerivative

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testRectifiedLinearDerivative() {
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    //ReLU:
    //f(x) = max(0,x)
    //Piecewise differentiable; choose f'(0) = 0
    //f'(x) = 1 if x > 0
    //f'(x) = 0 if x <= 0

    INDArray z = Nd4j.zeros(100);
    double[] expOut = new double[100];
    for (int i = 0; i < 100; i++) {
        double x = 0.1 * (i - 50);
        z.putScalar(i, x);
        expOut[i] = (x > 0 ? 1 : 0);
    }

    INDArray zPrime = Nd4j.getExecutioner()
                    .execAndReturn(new Step(z));

    for (int i = 0; i < 100; i++) {
        assertTrue(expOut[i] == zPrime.getDouble(i));
    }
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:25,代碼來源:DerivativeTests.java

示例4: testTsne

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testTsne() throws Exception {
    Nd4j.ENFORCE_NUMERICAL_STABILITY = true;
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    Nd4j.getRandom().setSeed(123);
    BarnesHutTsne b = new BarnesHutTsne.Builder().stopLyingIteration(10).setMaxIter(10).theta(0.5).learningRate(500)
                    .useAdaGrad(false).build();

    ClassPathResource resource = new ClassPathResource("/mnist2500_X.txt");
    File f = resource.getTempFileFromArchive();
    INDArray data = Nd4j.readNumpy(f.getAbsolutePath(), "   ").get(NDArrayIndex.interval(0, 100),
                    NDArrayIndex.interval(0, 784));



    ClassPathResource labels = new ClassPathResource("mnist2500_labels.txt");
    List<String> labelsList = IOUtils.readLines(labels.getInputStream()).subList(0, 100);
    b.fit(data);
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:20,代碼來源:BarnesHutTsneTest.java

示例5: testSerializationOnViewsNd4jWriteRead

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testSerializationOnViewsNd4jWriteRead() throws Exception {
    int length = 100;
    Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT);
    INDArray arr = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    INDArray sub = arr.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10));

    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    try (DataOutputStream dos = new DataOutputStream(baos)) {
        Nd4j.write(sub, dos);
    }
    byte[] bytes = baos.toByteArray();

    //SET DATA TYPE TO DOUBLE and initialize another array with the same contents
    //Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    System.out.println("The data opType is " + Nd4j.dataType());
    INDArray arr1 = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    INDArray sub1 = arr1.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10));

    INDArray arr2;
    try (DataInputStream dis = new DataInputStream(new ByteArrayInputStream(bytes))) {
        arr2 = Nd4j.read(dis);
    }

    //assertEquals(sub,arr2);
    assertTrue(Transforms.abs(sub1.sub(arr2).div(sub1)).maxNumber().doubleValue() < 0.01);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:30,代碼來源:TestSerializationFloatToDouble.java

示例6: testColumnSumDouble

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testColumnSumDouble() {
    DataBuffer.Type initialType = Nd4j.dataType();
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    INDArray twoByThree = Nd4j.linspace(1, 600, 600).reshape(150, 4);
    INDArray columnVar = twoByThree.sum(0);
    INDArray assertion = Nd4j.create(new float[] {44850.0f, 45000.0f, 45150.0f, 45300.0f});
    assertEquals(getFailureMessage(), assertion, columnVar);
    DataTypeUtil.setDTypeForContext(initialType);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:11,代碼來源:ShapeTestsC.java

示例7: setUp

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Before
public void setUp() {
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT);
    CudaEnvironment.getInstance().getConfiguration()
            .allowMultiGPU(true)
            .allowCrossDeviceAccess(true)
            .enableDebug(true)
            .setMaximumGridSize(512)
            .setMaximumBlockSize(256)
            .setVerbose(true);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:12,代碼來源:AveragingTests.java

示例8: testSerializationOnViewsJava

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testSerializationOnViewsJava() throws Exception {
    int length = 100;
    Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    INDArray arr = Nd4j.linspace(1, length, length).reshape('c', 10, 10);

    INDArray sub = arr.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10));

    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    try (ObjectOutputStream oos = new ObjectOutputStream(baos)) {
        oos.writeObject(sub);
    }
    byte[] bytes = baos.toByteArray();
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT);
    System.out.println("The data opType is " + Nd4j.dataType());
    INDArray arr1 = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    INDArray sub1 = arr1.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10));

    INDArray arr2;
    try (ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes))) {
        arr2 = (INDArray) ois.readObject();
    }

    //assertEquals(sub,arr2);
    assertTrue(Transforms.abs(sub1.sub(arr2).div(sub1)).maxNumber().doubleValue() < 0.01);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:28,代碼來源:TestSerializationDoubleToFloat.java

示例9: testHalf19

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Ignore
@Test
public void testHalf19() {
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.HALF);
    INDArray first = Nd4j.rand(20, 10);
    INDArray second = Nd4j.rand(3, 20);
    DataSet data = new DataSet(first, second);

    data.normalize();
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:11,代碼來源:SporadicTests.java

示例10: testLogSoftmax2

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testLogSoftmax2() {
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT);
    INDArray array1 = Nd4j.create(new double[] {-3.9492188, -7.953125, -4.3476562, 2.1445312, -1.2080078, -2.640625, -5.984375, 13.125, -1.0908203, 4.140625, 1.7753906, -9.1875, -1.7216797, 0.02407837, -2.6074219, 5.1875, 2.8476562, -4.6796875, 2.3886719, -1.5478516, -5.65625, 7.6015625, 0.6513672, 0.36108398, -4.0234375, -0.73828125, 0.23620605, -2.5449219, 2.5097656, -3.1894531, 0.5698242, -2.8105469, 0.34570312, -1.8349609, -2.1777344, 3.7207031, 2.3554688, -4.71875, 1.9306641, -4.0234375, -5.8828125, 7.46875, -0.5571289, 1.3974609, -2.3925781, -0.7763672, -1.3125, 0.27685547, 0.7158203, -1.4169922, 0.25170898, -11.40625, 1.0244141, -6.375, 4.1914062, -0.9916992, 7.1132812, -2.1914062, -1.3115234, -0.54248047, -4.4726562, -5.78125, 1.3642578, 8.7890625, -3.0898438, -0.4284668, -3.8691406, -5.5429688, 2.8710938, -3.0449219, -5.09375, -6.9375, -5.6992188, -1.4013672, 6.578125, -0.8378906, -2.4882812, 3.6757812, 1.515625, 4.6015625, 3.2714844, -11.515625, 4.6953125, -6.7421875, -0.34765625, 0.55029297, 11.1328125, -7.9414062, -1.1298828, -4.3710938, -1.2958984, -5.7539062, -1.3154297, 2.9492188, -2.5507812, 4.7421875, 2.8300781, -3.859375, 1.6787109, -3.9316406, -6.703125, -3.1914062, -5.3554688, 0.25634766, 1.2685547, -0.09802246, -5.6445312, 2.8046875, 3.0644531, 5.1289062, 9.3828125, -14.03125, -0.8144531, -2.5136719, -4.921875, 2.0410156, 2.6503906, -5.5351562, 0.87109375, -2.7792969, -7.15625, -1.8056641, -3.6484375, 3.1542969, -1.9492188, -2.640625, -8.0, 10.625, 0.7675781, 3.5644531, 5.4726562, -7.3476562, 0.8720703, -0.8852539, -4.625, 2.2441406, 2.1074219, -5.71875, 1.4023438, -5.4960938, -1.453125, -6.4140625, 1.6884766, -3.4433594, -0.3112793, 1.3066406, 1.8271484, -2.0976562, 3.9550781, -2.6542969, -5.0195312, 4.9375, -0.4868164, 1.3183594, -1.5224609, -1.6308594, -2.6542969, 1.9677734, 0.052520752, -1.1816406, -3.3867188, -4.6484375, 0.74853516, 10.8203125, -6.4179688, 3.375, -2.6777344, -3.9882812, 2.0351562, -3.0859375, -1.0869141, -8.2421875, 10.796875, -3.9785156, 0.8901367, -3.7617188, 2.078125, -5.3085938, 2.4589844, -2.8769531, -4.7421875, -5.5664062, -5.4375, 0.62109375, 4.71875, 0.30004883, -2.7832031, 1.4794922, -0.5761719, 5.484375, 13.3125, -14.625, 1.0888672, -3.3847656, -8.4375, 5.0742188, 0.94140625, -2.7675781, 0.9082031, -3.5429688, 1.5888672, -10.6328125, -0.24804688, -4.0898438, -1.2021484, 4.9492188, -2.4238281, 1.1298828, 2.4082031, 2.0, 8.8671875, -10.4765625, -1.1660156, -0.11407471, -4.3789062, 2.3144531, 0.41967773, -3.1679688, -0.72753906, -3.1074219, -6.0390625, 8.140625, 0.29370117, 0.99658203, -3.6796875, -1.4394531, -1.0029297, -1.3320312, 2.0351562, -2.3378906, -4.7695312, 7.0078125, -0.40039062, 0.8964844, -2.7910156, -1.2470703, -1.9521484, -1.4960938, 2.3808594, -2.7539062, -0.15222168, -9.8125, 2.1445312, -0.9038086, -1.2236328, -1.1972656, 3.5898438, -1.1835938, 3.1035156, -3.9980469, 0.66845703, -0.89697266, -0.30273438, -2.4316406, -3.7617188, 4.6523438, -1.3779297, -1.2138672, 2.2128906, -2.5332031, -2.1542969, -5.3398438, -3.2363281, 2.7167969, -3.2265625, 6.3007812, -2.390625, -3.0449219, 2.5078125, -0.6972656, 4.7578125, -7.7304688, 1.2607422, -3.3457031, -2.0273438, 1.9853516, 7.6914062, -5.8320312, -3.1367188, -5.109375, -3.953125, 4.21875, 0.042419434, -0.08477783, -0.5551758, -1.9941406, -1.2919922, 0.009750366, 0.83740234, -2.0507812, 0.24902344, -7.9882812, 2.9492188, -5.5820312, 0.4975586, 2.7792969, 11.0625, -9.4453125, 1.8164062, -4.890625, -3.3496094, -3.7050781, 1.203125, 4.109375, -2.0839844, 3.3613281, 3.0800781, -7.6054688, 2.1679688, -3.5292969, -3.1816406, -3.4160156, -2.0175781, 2.4863281, -0.8803711, 5.2226562, 0.19165039, -4.2148438, 1.9824219, -0.796875, -5.25, -6.3671875, -3.1757812, -4.296875, 7.0820312, -1.8271484, -0.23388672, 1.3037109, 1.5605469, 1.9199219, -3.5234375, -9.4453125, 1.7578125, -0.16296387, -0.1965332, 0.5551758, 0.5957031, -4.0976562, 6.4570312, -0.10626221, -0.3630371, -7.1914062, -1.3144531, 0.83740234, -1.078125, 5.5390625, 1.2519531, -5.3046875, 2.6953125, -1.3242188, -5.7226562, -1.8388672, 0.26489258, 0.71435547, 0.60595703, 2.6523438, 5.6953125, -5.921875, 0.91552734, -3.7050781, -3.3242188, -13.0625, -3.1269531, -5.0625, 10.9453125, -0.06298828, 1.2373047, -2.6679688, 2.7070312, 2.3378906, -1.6533203, -1.8964844, 1.0283203, -2.3398438, -0.11425781, 1.1699219, 4.3203125, -3.5585938, 0.31958008, -1.5, 3.8417969, -10.9921875, -4.9648438, 2.0527344, -4.3515625, 8.3515625, -0.390625, -4.6210938, 1.4873047, -1.9785156, -3.7265625, -8.015625, -5.71875, -4.109375, 4.2617188, 2.3613281, -1.9804688, 1.5908203, 3.5742188, 4.765625, -7.1210938, -2.6601562, -5.4453125, 1.5078125, -1.3525391, -1.3378906, -7.2734375, 10.6484375, 0.95996094, 3.3320312, -3.9550781, -12.1015625, -4.546875, -3.0546875, 5.5625, -1.7119141, -3.9863281, 2.2265625, 2.4492188, 7.4101562, -0.32788086, -5.8476562, -2.0839844, 7.09375, -5.1210938, 5.5742188, -1.5576172, -3.984375, 1.0644531, -2.1660156, -5.4921875, 6.203125, 0.4140625, 0.47314453, -2.6699219, -2.9589844, -1.2353516, -1.3867188, 3.2324219, -2.7578125, -5.6367188, -4.5664062, 5.40625, 1.2607422, -5.0078125, -0.72265625, 2.5019531, 1.3212891, 0.31176758, -3.8769531, -1.8183594, -11.46875, -2.6640625, -5.1015625, 4.1054688, -2.3203125, -2.5683594, 5.2539062, 1.5615234, 6.0234375, 0.8071289, -9.6875, -4.4765625, -0.70947266, 0.4790039, 1.2851562, -1.5351562, 5.0351562, -2.1386719, 3.0097656, 5.9140625, -12.2265625, -0.30688477, -1.1142578, -2.5703125, 1.3789062, 0.33276367, -3.3554688, -0.29370117, -0.9404297, -3.0742188, -9.65625, -2.2441406, -3.9296875, 3.4335938, -0.56591797, -1.8828125, 2.9492188, 1.2861328, 5.2734375, -2.1230469, -7.0664062, -2.3515625, 7.5585938, -3.7910156, 5.3046875, -2.3789062, -4.5898438, 2.2421875, -1.8740234, -1.765625, -8.4296875, -6.9335938, -1.765625, 1.7792969, 0.16235352, -6.5898438, 10.4140625, -1.2558594, 6.625, -3.6503906, -6.5273438, 9.515625, -2.7675781, -3.1152344, -3.3027344, -0.5083008, -1.5878906, 3.2949219, -1.4951172, 13.3828125, -15.90625, 1.203125, -4.4804688, -8.1953125, 1.7871094, 2.1386719, -1.8378906, 0.3474121, -3.3046875, 2.0195312, -11.1953125, 2.1367188, -2.71875, -0.83447266, 3.1113281, 9.2734375, -11.3515625, 3.40625, -4.8398438, -1.6025391, -5.34375, -0.6191406, 1.8554688, -2.5683594, 6.0117188, 1.2353516, -3.6757812, 2.3320312, -3.078125, -4.40625, -9.875, -3.5390625, 0.0914917, 7.59375, 0.49438477, -1.5166016, -1.3427734, 0.4272461, 3.328125, -4.8984375, -4.671875, -1.4003906, 2.3769531, -2.4667969, -0.21350098, -0.1340332, -3.2675781, 5.4726562, -2.1191406, -2.6816406, -6.25, -2.8066406, -4.6601562, 5.8164062, 0.97998047, 0.48120117, -1.8466797, 2.2617188, 1.5771484, -2.8398438, -4.0, 2.3007812, -3.9453125, 0.4416504, 2.8554688, 8.046875, -7.6328125, 1.3613281, -3.5449219, -5.7617188, 5.1015625, -0.88427734, 1.6591797, -1.4179688, 0.27734375, -1.1875, 0.4296875, 0.20751953, -0.49414062, -5.5820312, -2.4042969, -2.5859375, -2.8398438, 1.4306641, -1.9990234, -1.5800781, 5.1523438, 2.5039062, 0.7314453, 1.9658203, -8.875, 3.6210938, -0.7963867, -4.109375, -0.092041016, 5.4335938, -2.5898438, 1.8925781, -4.53125, 1.3935547, -8.296875, 2.9355469, -5.53125, -1.7333984, 0.52490234, 10.3125, -10.0625, 4.3867188, -4.6171875, -5.9101562, 7.4609375, -0.6044922, 2.0, -2.4882812, -1.7333984, -2.5527344, 0.45996094, 0.83154297, -1.5947266, -7.8046875, -4.9375, -0.3491211, 7.2578125, 1.0126953, 0.95166016, -2.2128906, -2.8886719, 2.0136719, 1.1728516, -0.5097656, -11.59375, 3.0390625, -7.1289062, 3.140625, -1.2822266, 11.6953125, -3.7949219, 0.9658203, -3.9511719, -6.90625, -3.3691406, 2.4921875, 2.3710938, -1.125, -3.9628906, -3.0273438, 5.3632812, 0.5229492, 0.6230469, 8.890625, -12.296875, -2.953125, -1.6738281, -5.2695312, 6.0742188, -1.2392578, -2.0195312, 1.7099609, -1.015625, -1.8808594, -7.5, 0.55615234, 2.2148438, -2.4335938, 5.9609375, 3.625, -7.2421875, 2.796875, -3.7949219, -5.6875, 7.0703125, 0.17626953, 1.3525391, -2.8945312, -1.2324219, -1.1328125, 0.2076416, 0.41308594, -1.3964844, -1.65625, -3.9003906, 0.9082031, -1.8662109, 1.3046875, 0.61865234, 5.125, -6.8671875, 0.9135742, -3.0898438, -4.5625, -14.5078125, 0.015930176, -3.1972656, 8.953125, -1.4765625, 2.1523438, -0.3100586, 2.1386719, 2.1738281, -7.4140625, 7.296875, -0.43408203, 2.2675781, -4.3085938, -1.5605469, -2.7890625, 0.7661133, 1.8984375, -1.140625, 2.1992188, -9.0859375, 3.921875, -5.34375, -1.0742188, 0.68652344, 10.0, -6.6171875, -0.10107422, -4.0859375, -4.0078125, -9.9375, -3.1855469, -4.21875, 8.1171875, -2.7558594, 0.5078125, 0.42236328, 1.4384766, 1.9023438, 0.5966797, -9.3515625, -5.0546875, 0.7705078, -3.1660156, -1.4169922, -5.2539062, 12.875, -0.8510742, 2.9023438, -3.4355469, 4.5351562, -0.25170898, 0.24487305, -1.6630859, -0.47631836, -0.89160156, -0.034240723, 0.8989258, -0.7265625, -2.1035156, -4.1015625, 4.5, 0.5800781, -3.7675781, -2.3476562, -4.0117188, 0.625, 2.546875, -0.86621094, -4.3164062, 6.4179688, 0.14465332, 0.7241211, -3.3378906, -0.0074691772, -0.8852539, -0.8564453, 1.4521484, -1.6572266, -5.0117188, -5.0664062, -3.1757812, 0.20800781, 3.5859375, -0.4321289, -2.6386719, 1.3339844, -0.26904297, 5.453125, -0.9057617, -6.2539062, 2.1132812, -1.5947266, -0.34033203, 0.15539551, 8.71875, -7.6992188, 0.074279785, -4.4023438, -2.1289062, -9.25, -3.0136719, 3.0605469, -2.1152344, -2.046875, -6.1210938, 11.53125, -1.0195312, 3.9042969, -4.1289062, -6.3085938, -5.7460938, -0.2824707, -0.28051758, -0.24255371, -7.2734375, 10.921875, -0.15100098, 5.796875, 8.9609375, -13.53125, 0.016021729, -2.9667969, -3.890625, 3.9960938, 1.0693359, -2.9472656, 0.63916016, -2.7734375, 4.4335938, -10.84375, 5.984375, 5.6367188, -9.9921875, -1.7148438, 0.4831543, -1.2626953, 1.4619141, -6.6132812, 2.8847656, -10.34375, 2.8339844, -1.2333984, -3.4511719, 1.2685547, 1.8369141, -3.6035156, 3.1933594, -2.4277344, 0.3491211, -8.1328125, -4.5273438, 1.4755859, -1.1210938, 7.8125, 0.6621094, -4.6289062, 1.9970703, -0.14282227, -5.4765625, -5.8125, -2.1425781, -3.5058594, 3.5273438, -0.4975586, 0.8984375, 4.4296875, -0.5908203, 2.8964844, -4.21875, -9.4140625, -3.015625, -5.734375, 11.3515625, -2.2695312, 0.9716797, -0.7138672, 2.0722656, 2.3183594, -1.3671875, -8.453125, -1.0820312, 3.9921875, -4.8164062, 2.9804688, -2.5527344, 0.484375, 2.6015625, -0.22485352, -2.8417969, -6.8554688, 4.3554688, -6.25, 1.4355469, 2.0332031, 10.5546875, -10.53125, 2.5859375, -4.7460938, 0.8535156, -9.015625, -1.578125, 3.3457031, -2.2402344, 5.90625, -2.6230469, -4.8984375, 3.9707031, -2.8808594, -5.4257812, -5.5546875, -5.7382812, 0.5317383, 3.6269531, 2.0820312, -3.4121094, 0.8666992, 0.6401367, 6.2421875, 0.6777344, -7.921875, -1.5048828, 7.703125, -6.609375, 3.9121094, -3.015625, -3.4160156, 2.9121094, -4.1015625, -4.6132812, 5.296875, 0.89941406, 0.36865234, -1.4892578, -2.5703125, -1.5419922, -0.5732422, 1.1542969, -2.2695312, -5.25, -9.34375, -4.6484375, 1.1386719, 4.4609375, 1.5175781, -3.9589844, 1.0029297, 0.8779297, 6.6484375, -6.3125, 7.3164062, -1.40625, 1.3681641, -2.3339844, -0.2998047, -2.3105469, 0.08630371, 1.5976562, -1.0966797, 1.6259766, -7.2695312, -2.4863281, -0.91845703, -1.7949219, 3.6171875, 6.1914062, -8.53125, 0.026794434, -3.3789062, -3.9082031, -4.9335938, 9.390625, -0.30664062, -1.9775391, -2.6445312, -0.6386719, -3.6425781, 3.5996094, -3.4121094, -6.3476562, 5.609375, -0.6875, 2.2714844, -1.4580078, -1.7958984, -2.1601562, 1.9775391, -0.57666016, -0.3894043, -3.0410156, -4.0117188, 1.3916016, 6.8203125, -3.0039062, 0.40112305, -2.0097656, -2.7421875, 0.953125, -3.3945312, 1.2753906, -10.3203125, 3.3300781, -5.9179688, -0.20898438, -0.114746094, 10.265625, -5.9335938, 1.3808594, -5.1054688, 0.43286133, -7.5742188, -7.609375, -1.3525391, -1.046875, 2.6445312, -4.5117188, 9.578125, -0.17993164, 3.6777344, -3.0566406, -2.9921875, 0.85791016, -1.5742188, 1.3525391, 0.46557617, 3.8554688, -5.03125, 0.7138672, -1.671875, -1.6064453, -3.5117188, 0.6743164, 0.3972168, -1.5791016, 3.6015625, 2.9863281, -3.8574219, 2.1679688, -3.7148438, -4.4921875, -11.234375, 0.9291992, 5.2929688, -2.7070312, 0.6196289, -6.6992188, 1.4130859, 4.4921875, 0.53808594, -6.4804688, 7.578125, -0.9711914, 1.8388672, -2.7871094, -0.6245117, -1.6474609, -0.028076172, 1.6601562, -1.4501953, -6.5273438, 6.1015625, 0.36645508, 0.6503906, -0.47631836, -3.7050781, -1.5585938, -0.39892578, 1.5400391, -2.1992188, -5.3242188, -5.5820312, -1.1386719, 7.7070312, -5.8398438, 1.3330078, -5.8242188, 2.1933594, 2.7910156, 0.3317871, -4.2773438, -5.84375, -1.8154297, 7.375, -3.9296875, 1.8798828, -6.5117188, -0.79003906, 3.6953125, -0.33447266, -4.6171875, 4.9921875, 1.0126953, 0.49926758, -1.0654297, -3.5703125, -1.7978516, -0.7753906, 1.5996094, -3.0410156, -0.21472168, -7.1835938, 4.9765625, -0.6020508, 1.2802734, -1.8876953, 2.3300781, -5.359375, 0.6870117, -3.1914062, -3.9414062, -1.4169922, -1.4296875, -0.9970703, -5.390625, 0.515625, -3.7128906, -1.4501953, 8.3515625, -1.6914062, -1.1552734, -7.1054688, 5.0195312, -1.0087891, 3.0742188, -1.8681641, 2.8710938, -4.015625, -0.96240234, -1.6445312, -1.3134766, -14.6328125, 5.1992188, -7.28125, 6.59375, -3.7402344, 11.0625, -3.8730469, -0.59033203, -0.8720703, -6.3710938, -6.6640625, -5.78125, 2.7285156, 3.8046875, 1.6210938, -4.9492188, 1.5576172, 0.9472656, 5.9335938, -2.3652344, -5.0195312, 2.4023438, 1.4453125, -4.0234375, -2.3554688, -5.0625, 5.7851562, -0.094177246, 1.6894531, -4.9882812, -6.1367188, 0.5625, 6.4921875, -3.0117188, -0.27368164, -4.8945312, 2.1445312, 2.7753906, 0.41137695, -6.390625, -10.5625, -5.1835938, 0.75634766, 5.6875, -0.35205078, -4.5039062, 3.6367188, 0.4584961, 7.3203125, -3.8417969, -9.78125, -4.53125, -4.7304688, 9.28125, -1.3535156, 0.609375, 1.9599609, 2.1152344, 4.078125, -7.015625, -5.6210938, -4.1523438, -1.5693359, 7.8632812, -0.36376953, -0.49560547, -0.107543945, 0.93115234, 2.3046875, -4.6132812, -4.7773438, 14.34375, 1.8056641, -9.8046875, -1.8408203, 1.5429688, -6.1484375, 5.84375, -8.3046875, 10.4609375, -13.1796875, 2.0917969, -8.2421875, -4.8476562, 4.34375, 5.4960938, -7.859375, 2.0605469, -5.2539062, -3.1523438, -13.1484375, 2.421875, -5.96875, 7.2773438, -3.5996094, 5.4765625, -0.3918457, 0.34838867, 0.7138672, -4.9296875, 2.8085938, 6.328125, 1.2519531, -4.9179688, -1.9257812, 2.2773438, -1.8183594, 0.075927734, -4.8632812, -4.1210938, 4.7109375, -0.18847656, -0.0033340454, -0.9140625, -1.796875, -1.8095703, 0.2319336, 1.1972656, -2.1445312, -5.5273438, 6.7226562, -0.5678711, 1.2050781, -2.8398438, -1.7080078, -2.6015625, 1.6298828, 0.76416016, -1.3017578, -4.3554688, -8.53125, -1.4111328, 4.6640625, -2.765625, 1.6875, -5.8085938, 0.9165039, 2.5410156, 1.5732422});

    Nd4j.getExecutioner().exec(new LogSoftMax(array1));

    System.out.println("Array1: " + Arrays.toString(array1.data().asFloat()));
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.HALF);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:11,代碼來源:HalfOpsTests.java

示例11: testNd4jDup

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testNd4jDup() {
/* set the dType */
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);

/* create NDArray from a double[][] */
    int cnt = 0;
    double data[][] = new double[50][50];
    for (int x = 0; x < 50; x++) {
        for (int y = 0; y< 50; y++) {
            data[x][y] = cnt;
            cnt++;
        }
    }
    INDArray testNDArray = Nd4j.create(data);

/* print the first row */
    System.out.println("A: " + testNDArray.getRow(0));

/* set the dType again! */
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);

/* print the first row */
    System.out.println("B: " + testNDArray.getRow(0));

/* print the first row dup -- it should be different now! */
    System.out.println("C: " + testNDArray.getRow(0).dup());
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:29,代碼來源:CudaExecutionerTest.java

示例12: testSerializationFullArrayJava

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testSerializationFullArrayJava() throws Exception {
    int length = 100;
    Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    INDArray arr = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    arr.subi(50.0123456); //assures positive and negative numbers with decimal points

    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    try (ObjectOutputStream oos = new ObjectOutputStream(baos)) {
        oos.writeObject(arr);
    }
    byte[] bytes = baos.toByteArray();

    //SET DATA TYPE TO FLOAT and initialize another array with the same contents
    //Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT);
    System.out.println("The data opType is " + Nd4j.dataType());
    INDArray arr1 = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    arr1.subi(50.0123456);

    INDArray arr2;
    try (ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes))) {
        arr2 = (INDArray) ois.readObject();
    }

    assertTrue(Transforms.abs(arr1.sub(arr2).div(arr1)).maxNumber().doubleValue() < 0.01);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:29,代碼來源:TestSerializationDoubleToFloat.java

示例13: testSerializationOnViewsNd4jWriteRead

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testSerializationOnViewsNd4jWriteRead() throws Exception {
    int length = 100;
    Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    INDArray arr = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    INDArray sub = arr.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10));

    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    try (DataOutputStream dos = new DataOutputStream(baos)) {
        Nd4j.write(sub, dos);
    }
    byte[] bytes = baos.toByteArray();

    //SET DATA TYPE TO FLOAT and initialize another array with the same contents
    //Nd4j.create(1);
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT);
    System.out.println("The data opType is " + Nd4j.dataType());
    INDArray arr1 = Nd4j.linspace(1, length, length).reshape('c', 10, 10);
    INDArray sub1 = arr1.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10));

    INDArray arr2;
    try (DataInputStream dis = new DataInputStream(new ByteArrayInputStream(bytes))) {
        arr2 = Nd4j.read(dis);
    }

    //assertEquals(sub,arr2);
    assertTrue(Transforms.abs(sub1.sub(arr2).div(sub1)).maxNumber().doubleValue() < 0.01);
}
 
開發者ID:deeplearning4j,項目名稱:nd4j,代碼行數:30,代碼來源:TestSerializationDoubleToFloat.java

示例14: testBinary

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@Test
public void testBinary() {

    Nd4j.MAX_ELEMENTS_PER_SLICE = Integer.MAX_VALUE;
    Nd4j.MAX_SLICES_TO_PRINT = Integer.MAX_VALUE;
    DataBuffer.Type initialType = Nd4j.dataType();
    DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
    INDArray data = Nd4j.create(new double[][] {{1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 0, 0}, {1, 1, 1, 0, 0, 0},
                    {0, 0, 1, 1, 1, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 0}});

    INDArray data2 = Nd4j.create(new double[][] {{1, 0}, {1, 0}, {1, 0}, {0, 1}, {0, 1}, {0, 1}});

    DataSet dataset = new DataSet(data, data2);
    NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
                    .seed(123)
                    .updater(new Sgd(1e-2))
                    .layer(new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder().nIn(6).nOut(2)
                                    .weightInit(WeightInit.ZERO).activation(Activation.SOFTMAX)
                                    .lossFunction(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).build())
                    .build();

    int numParams = conf.getLayer().initializer().numParams(conf);
    INDArray params = Nd4j.create(1, numParams);
    OutputLayer o = (OutputLayer) conf.getLayer().instantiate(conf, null, 0, params, true);
    o.setBackpropGradientsViewArray(Nd4j.create(1, params.length()));

    o.setListeners(new ScoreIterationListener(1));
    for( int i=0; i<200; i++ ) {
        o.fit(dataset);
    }

    DataTypeUtil.setDTypeForContext(initialType);
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:34,代碼來源:OutputLayerTest.java

示例15: setUp

import org.nd4j.linalg.api.buffer.util.DataTypeUtil; //導入方法依賴的package包/類
@BeforeClass
public static void setUp() {
    type = Nd4j.dataType();
    DataTypeUtil.setDTypeForContext(Type.FLOAT);
    log = LoggerFactory.getLogger(GravesLSTMOutputTest.class);
    data = getData();
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:8,代碼來源:GravesLSTMOutputTest.java


注:本文中的org.nd4j.linalg.api.buffer.util.DataTypeUtil.setDTypeForContext方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。