當前位置: 首頁>>代碼示例>>Java>>正文


Java JavaDStream.print方法代碼示例

本文整理匯總了Java中org.apache.spark.streaming.api.java.JavaDStream.print方法的典型用法代碼示例。如果您正苦於以下問題:Java JavaDStream.print方法的具體用法?Java JavaDStream.print怎麽用?Java JavaDStream.print使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.spark.streaming.api.java.JavaDStream的用法示例。


在下文中一共展示了JavaDStream.print方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: start

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
private void start() {
	// Create a local StreamingContext with two working thread and batch interval of
	// 1 second
	SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
	JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));

	JavaDStream<String> msgDataStream = jssc.textFileStream(StreamingUtils.getInputDirectory());
	msgDataStream.print();

	jssc.start();
	try {
		jssc.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
開發者ID:jgperrin,項目名稱:net.jgp.labs.spark,代碼行數:18,代碼來源:StreamingIngestionFileSystemTextFileApp.java

示例2: start

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
private void start() {
	// Create a local StreamingContext with two working thread and batch interval of
	// 1 second
	SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("Streaming Ingestion File System Text File to Dataframe");
	JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));

	JavaDStream<String> msgDataStream = jssc.textFileStream(StreamingUtils.getInputDirectory());

	msgDataStream.print();
	// Create JavaRDD<Row>
	msgDataStream.foreachRDD(new RowProcessor());	

	jssc.start();
	try {
		jssc.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
開發者ID:jgperrin,項目名稱:net.jgp.labs.spark,代碼行數:21,代碼來源:StreamingIngestionFileSystemTextFileToDataframeMultipleClassesApp.java

示例3: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
	String master = args[0];
	JavaSparkContext sc = new JavaSparkContext(master, "StreamingLogInput");
   // Create a StreamingContext with a 1 second batch size
   JavaStreamingContext jssc = new JavaStreamingContext(sc, new Duration(1000));
   // Create a DStream from all the input on port 7777
   JavaDStream<String> lines = jssc.socketTextStream("localhost", 7777);
   // Filter our DStream for lines with "error"
   JavaDStream<String> errorLines = lines.filter(new Function<String, Boolean>() {
       public Boolean call(String line) {
         return line.contains("error");
       }});
   // Print out the lines with errors, which causes this DStream to be evaluated
   errorLines.print();
   // start our streaming context and wait for it to "finish"
   jssc.start();
   // Wait for 10 seconds then exit. To run forever call without a timeout
   jssc.awaitTermination(10000);
   // Stop the streaming context
   jssc.stop();
}
 
開發者ID:holdenk,項目名稱:learning-spark-examples,代碼行數:22,代碼來源:StreamingLogInput.java

示例4: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String[] args) {
   	//Window Specific property if Hadoop is not instaalled or HADOOP_HOME is not set
	 System.setProperty("hadoop.home.dir", "E:\\hadoop");
   	//Logger rootLogger = LogManager.getRootLogger();
  		//rootLogger.setLevel(Level.WARN); 
       SparkConf conf = new SparkConf().setAppName("KafkaExample").setMaster("local[*]");
       String inputDirectory="E:\\hadoop\\streamFolder\\";
    
       JavaSparkContext sc = new JavaSparkContext(conf);
       JavaStreamingContext streamingContext = new JavaStreamingContext(sc, Durations.seconds(1));
      // streamingContext.checkpoint("E:\\hadoop\\checkpoint");
       Logger rootLogger = LogManager.getRootLogger();
  		rootLogger.setLevel(Level.WARN); 
  		
  		JavaDStream<String> streamfile = streamingContext.textFileStream(inputDirectory);
  		streamfile.print();
  		streamfile.foreachRDD(rdd-> rdd.foreach(x -> System.out.println(x)));
  		
  			   		
  		JavaPairDStream<LongWritable, Text> streamedFile = streamingContext.fileStream(inputDirectory, LongWritable.class, Text.class, TextInputFormat.class);
  	 streamedFile.print();
  		
  	 streamingContext.start();
  	 

       try {
		streamingContext.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
開發者ID:PacktPublishing,項目名稱:Apache-Spark-2x-for-Java-Developers,代碼行數:33,代碼來源:FileStreamingEx.java

示例5: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String[] args) throws InterruptedException {
    SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("pulsar-spark");
    JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));

    ClientConfiguration clientConf = new ClientConfiguration();
    ConsumerConfiguration consConf = new ConsumerConfiguration();
    String url = "pulsar://localhost:6650/";
    String topic = "persistent://sample/standalone/ns1/topic1";
    String subs = "sub1";

    JavaReceiverInputDStream<byte[]> msgs = jssc
            .receiverStream(new SparkStreamingPulsarReceiver(clientConf, consConf, url, topic, subs));

    JavaDStream<Integer> isContainingPulsar = msgs.flatMap(new FlatMapFunction<byte[], Integer>() {
        @Override
        public Iterator<Integer> call(byte[] msg) {
            return Arrays.asList(((new String(msg)).indexOf("Pulsar") != -1) ? 1 : 0).iterator();
        }
    });

    JavaDStream<Integer> numOfPulsar = isContainingPulsar.reduce(new Function2<Integer, Integer, Integer>() {
        @Override
        public Integer call(Integer i1, Integer i2) {
            return i1 + i2;
        }
    });

    numOfPulsar.print();

    jssc.start();
    jssc.awaitTermination();
}
 
開發者ID:apache,項目名稱:incubator-pulsar,代碼行數:33,代碼來源:SparkStreamingPulsarReceiverExample.java

示例6: validateTheReceptionOfMessages

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
protected void validateTheReceptionOfMessages(JavaStreamingContext ssc,
		JavaReceiverInputDStream<String> stream) throws InterruptedException {
	JavaDStream<String> messages = stream.repartition(3);

	ExecutorService executor = Executors.newFixedThreadPool(6);

	final int nbOfMessages = 5;
	NatsPublisher np = getNatsPublisher(nbOfMessages);
	
	if (logger.isDebugEnabled()) {
		messages.print();
	}
	
	messages.foreachRDD(new VoidFunction<JavaRDD<String>>() {
		private static final long serialVersionUID = 1L;

		@Override
		public void call(JavaRDD<String> rdd) throws Exception {
			logger.debug("RDD received: {}", rdd.collect());
			
			final long count = rdd.count();
			if ((count != 0) && (count != nbOfMessages)) {
				rightNumber = false;
				logger.error("The number of messages received should have been {} instead of {}.", nbOfMessages, count);
			}
			
			TOTAL_COUNT.getAndAdd((int) count);
			
			atLeastSomeData = atLeastSomeData || (count > 0);
			
			for (String str :rdd.collect()) {
				if (! str.startsWith(NatsPublisher.NATS_PAYLOAD)) {
						payload = str;
					}
			}
		}			
	});
	
	closeTheValidation(ssc, executor, nbOfMessages, np);		
}
 
開發者ID:Logimethods,項目名稱:nats-connector-spark,代碼行數:41,代碼來源:AbstractNatsToSparkTest.java

示例7: validateTheReceptionOfIntegerMessages

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
protected void validateTheReceptionOfIntegerMessages(JavaStreamingContext ssc, 
		JavaReceiverInputDStream<Integer> stream) throws InterruptedException {
	JavaDStream<Integer> messages = stream.repartition(3);

	ExecutorService executor = Executors.newFixedThreadPool(6);

	final int nbOfMessages = 5;
	NatsPublisher np = getNatsPublisher(nbOfMessages);
	
	if (logger.isDebugEnabled()) {
		messages.print();
	}
	
	messages.foreachRDD(new VoidFunction<JavaRDD<Integer>>() {
		private static final long serialVersionUID = 1L;

		@Override
		public void call(JavaRDD<Integer> rdd) throws Exception {
			logger.debug("RDD received: {}", rdd.collect());
			
			final long count = rdd.count();
			if ((count != 0) && (count != nbOfMessages)) {
				rightNumber = false;
				logger.error("The number of messages received should have been {} instead of {}.", nbOfMessages, count);
			}
			
			TOTAL_COUNT.getAndAdd((int) count);
			
			atLeastSomeData = atLeastSomeData || (count > 0);
			
			for (Integer value :rdd.collect()) {
				if (value < NatsPublisher.NATS_PAYLOAD_INT) {
						payload = value.toString();
					}
			}
		}			
	});
	
	closeTheValidation(ssc, executor, nbOfMessages, np);
}
 
開發者ID:Logimethods,項目名稱:nats-connector-spark,代碼行數:41,代碼來源:AbstractNatsToSparkTest.java

示例8: start

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public void start() {
    final JavaStreamingContext context = new JavaStreamingContext(conf, checkpointInterval);

    // for graceful shutdown of the application ...
    Runtime.getRuntime().addShutdownHook(new Thread() {
        @Override
        public void run() {
            System.out.println("Shutting down streaming app...");
            context.stop(true, true);
            System.out.println("Shutdown of streaming app complete.");
        }
    });

    JKinesisReceiver receiver = new JKinesisReceiver(appName, streamName,
                                                     endpointUrl, regionName,
                                                     checkpointInterval,
                                                     InitialPositionInStream.LATEST);

    JavaDStream<String> dstream = context.receiverStream(receiver);

    JavaDStream<EventRecord> recs = dstream.map(new EventRecordMapFunc());

    recs.print();

    // persist to DStream to Cassandra
    javaFunctions(recs)
        .writerBuilder("canary", "eventrecord", mapToRow(EventRecord.class))
        .saveToCassandra();


    System.out.println("Start Spark Stream Processing...");

    context.start();
    context.awaitTermination();

}
 
開發者ID:lenards,項目名稱:spark-cstar-canaries,代碼行數:37,代碼來源:Consumer.java

示例9: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String[] args) {
  if (args.length < 3) {
    System.err.println("Usage: NetworkWordCount <master> <hostname> <port>\n" +
        "In local mode, <master> should be 'local[n]' with n > 1");
    System.exit(1);
  }

  // Create the context with a 1 second batch size
  JavaStreamingContext ssc = new JavaStreamingContext(args[0], "NetworkWordCount",
          new Duration(5000), System.getenv("SPARK_HOME"), System.getenv("SPARK_EXAMPLES_JAR"));

  // Create a NetworkInputDStream on target ip:port and count the
  // words in input stream of \n delimited test (eg. generated by 'nc')
  JavaDStream<String> lines = ssc.socketTextStream(args[1], Integer.parseInt(args[2]));
  
  lines.map(new Function<String, String> () {

@Override
public String call(String arg0) throws Exception {
	System.out.println("arg0" + arg0);
	return arg0;
}}).print();
  
  lines.print();
  ssc.start();


}
 
開發者ID:tmalaska,項目名稱:SparkOnALog,代碼行數:29,代碼來源:SparkStreamingFromNetworkExample.java

示例10: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
@SuppressWarnings("serial")
public static void main(String[] args) throws InterruptedException {
//    if (args.length < 4) {
//      System.err.println("Usage: JavaKafkaWordCount <zkQuorum> <group> <topics> <numThreads>");
//      System.exit(1);
//    }
	  args = new String[4];
    args[0]="localhost:2181";
    args[1]= "1";
    args[2]= "test";
    args[3]= "1";

    SparkConf sparkConf = new SparkConf().setAppName("JavaKafkaWordCount").setMaster("spark://Impetus-NL163U:7077");
    // Create the context with a 1 second batch size
    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(20000));

    int numThreads = Integer.parseInt(args[3]);
    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    String[] topics = args[2].split(",");
    for (String topic: topics) {
      topicMap.put(topic, numThreads);
    }

    JavaPairReceiverInputDStream<String, String> messages =
            KafkaUtils.createStream(jssc, args[0], args[1], topicMap);

    final JavaDStream<String> lines = messages.map(new Function<Tuple2<String,String>, String>() {
		@Override
		public String call(Tuple2<String, String> v1) throws Exception {
			ObjectMapper objectMapper = new ObjectMapper();
			objectMapper.configure(Feature.USE_ANNOTATIONS, false);
			Map<String,String> mapValue = objectMapper.readValue(v1._2(), new TypeReference<Map<String,String>>() {
			});
			Collection<String> values = mapValue.values();
			String finalString = "";
			for (Iterator<String> iterator = values.iterator(); iterator.hasNext();) {
				String value = iterator.next();
				if(finalString.length()==0){
					finalString = finalString +value;
				}else {
				finalString = finalString+","+ value;
				}
			}
			return finalString;
		}
	});
    
    lines.print();
    new Thread(){
    	public void run() {
    		while(true){
    			try {
					Thread.sleep(1000);
				} catch (InterruptedException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
    			System.out.println("#############################################################################"+lines.count());
    		}
    	};
    }.start();
    
    jssc.start();
    jssc.awaitTermination();
  }
 
開發者ID:PacktPublishing,項目名稱:Practical-Real-time-Processing-and-Analytics,代碼行數:66,代碼來源:JavaKafkaWordCount.java

示例11: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
    Logger.getLogger("org").setLevel(Level.WARN);
    Logger.getLogger("akka").setLevel(Level.WARN);

    final Pattern SPACE = Pattern.compile(" ");

    SparkConf conf = new SparkConf().setAppName("Big Apple").setMaster("local[2]");
    JavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(1));

    JavaDStream<String> lines = ssc.textFileStream("src/main/resources/stream");
    lines.print();

    JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
        @Override
        public Iterator<String> call(String x) {
            return Lists.newArrayList(SPACE.split(x)).iterator();
        }
    });

    words.foreachRDD(
            new VoidFunction2<JavaRDD<String>, Time>() {
                @Override
                public void call(JavaRDD<String> rdd, Time time) {

                    // Get the singleton instance of SQLContext
                    SQLContext sqlContext = SQLContext.getOrCreate(rdd.context());

                    // Convert RDD[String] to RDD[case class] to Dataset
                    JavaRDD<JavaRecord> rowRDD = rdd.map(new Function<String, JavaRecord>() {
                        public JavaRecord call(String word) {
                            JavaRecord record = new JavaRecord();
                            record.setWord(word);
                            return record;
                        }
                    });
                    Dataset<Row> wordsDataset = sqlContext.createDataFrame(rowRDD, JavaRecord.class);

                    // Register as table
                    wordsDataset.registerTempTable("words");

                    // Do word count on table using SQL and print it
                    Dataset wordCountsDataset =
                            sqlContext.sql("select word, count(*) as total from words group by word");
                    wordCountsDataset.show();
                }
            }
    );


    ssc.start();
    ssc.awaitTermination();

}
 
開發者ID:knoldus,項目名稱:Sparkathon,代碼行數:54,代碼來源:SQLonStreams.java

示例12: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {

        final Pattern SPACE = Pattern.compile(" ");

        SparkConf conf = new SparkConf().setAppName("Big Apple").setMaster("local[2]");
        JavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(1));

        JavaDStream<String> lines = ssc.textFileStream("src/main/resources/stream");
        lines.print();

        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String x) {
                return Lists.newArrayList(SPACE.split(x)).iterator();
            }
        });

        JavaPairDStream<String, Integer> wordsDstream = words.mapToPair(
                new PairFunction<String, String, Integer>() {
                    @Override
                    public Tuple2<String, Integer> call(String s) {
                        return new Tuple2<String, Integer>(s, 1);
                    }
                });

        wordsDstream.print();

        Function2<Integer, Integer, Integer> reduceFunc = new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1, Integer i2) {
                return i1 + i2;
            }
        };

        JavaPairDStream<String, Integer> windowedWordCounts = wordsDstream.reduceByKeyAndWindow(reduceFunc, Durations.seconds(30), Durations.seconds(10));

        windowedWordCounts.print();


        ssc.start();
        ssc.awaitTermination();

    }
 
開發者ID:knoldus,項目名稱:Sparkathon,代碼行數:44,代碼來源:Windowstream.java

示例13: start

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
private void start() {
	// Create a local StreamingContext with two working thread and batch interval of
	// 1 second
	SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("Streaming Ingestion File System Text File to Dataframe");
	JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));

	JavaDStream<String> msgDataStream = jssc.textFileStream(StreamingUtils.getInputDirectory());

	msgDataStream.print();
	// Create JavaRDD<Row>
	msgDataStream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
		private static final long serialVersionUID = -590010339928376829L;

		@Override
		public void call(JavaRDD<String> rdd) {
			JavaRDD<Row> rowRDD = rdd.map(new Function<String, Row>() {
				private static final long serialVersionUID = 5167089361335095997L;

				@Override
				public Row call(String msg) {
					Row row = RowFactory.create(msg);
					return row;
				}
			});
			// Create Schema
			StructType schema = DataTypes.createStructType(
					new StructField[] { DataTypes.createStructField("Message", DataTypes.StringType, true) });
			
			// Get Spark 2.0 session
			SparkSession spark = JavaSparkSessionSingleton.getInstance(rdd.context().getConf());
			Dataset<Row> msgDataFrame = spark.createDataFrame(rowRDD, schema);
			msgDataFrame.show();
		}
	});

	jssc.start();
	try {
		jssc.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
開發者ID:jgperrin,項目名稱:net.jgp.labs.spark,代碼行數:44,代碼來源:StreamingIngestionFileSystemTextFileToDataframeApp.java

示例14: main

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
public static void main(String s[]) {
	StreamNumberServer.startNumberGeneratorServer(9999);

	// Create a local StreamingContext with two working thread and batch interval of 1 second
	SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("ConfigurableFilterApp");
	try (JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1))) {
		
		
		JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);
		
		JavaDStream<SensorData> values = lines.map(line -> SensorData.fromString(line));
		
		values = values.map(new CfgFunction());
		
		values.print();
		
		jssc.start();              // Start the computation
		jssc.awaitTermination();   // Wait for the computation to terminate
	} 
}
 
開發者ID:smarcu,項目名稱:spark-streaming-example,代碼行數:21,代碼來源:SparkStreamingExample.java

示例15: run

import org.apache.spark.streaming.api.java.JavaDStream; //導入方法依賴的package包/類
private void run(CompositeConfiguration conf) {
    // Kafka props
    String kafkaBrokers = conf.getString("metadata.broker.list");
    String topics = conf.getString("consumer.topic");
    String fromOffset = conf.getString("auto.offset.reset");

    // Spark props
    String sparkMaster = conf.getString("spark.master");
    long sparkStreamDuration = conf.getLong("stream.duration");

    // Cassandra props
    String cassandraKeyspace = "test";
    String cassandraTable = "kafka_logstream";
    String cassandraDbNode = conf.getString("cassandra.database.node");

    SparkConf sparkConf = new SparkConf().setAppName("Kafka Spark Cassandra Flow with Java API").setMaster(sparkMaster)
            .set("spark.cassandra.connection.host", cassandraDbNode);

    createDdl(sparkConf);

    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(sparkStreamDuration));

    HashSet<String> topicsSet = new HashSet<>(Arrays.asList(topics.split(",")));
    HashMap<String, String> kafkaParams = new HashMap<>();
    kafkaParams.put("metadata.broker.list", kafkaBrokers);
    kafkaParams.put("auto.offset.reset", fromOffset);

    // Create direct kafka stream with brokers and topics
    JavaPairInputDStream<String, String> messages = KafkaUtils.createDirectStream(jssc, String.class, String.class, StringDecoder.class,
            StringDecoder.class, kafkaParams, topicsSet);

    // Get the lines
    // JavaPairDStream<UUID, String> lines = messages.mapToPair(tuple2 -> new Tuple2<UUID, String>(UUID.randomUUID(), tuple2._2()));
    // JavaDStream<String> lines = messages.map(tuple2 -> UUID.randomUUID() + "\t" + tuple2._2());
    JavaDStream<KafkaRowWithUUID> lines = messages.map(tuple2 -> new KafkaRowWithUUID(UUID.randomUUID(), tuple2._2()));
    lines.print();

    javaFunctions(lines).writerBuilder(cassandraKeyspace, cassandraTable, mapToRow(KafkaRowWithUUID.class)).saveToCassandra();

    // Start the computation
    jssc.start();
    jssc.awaitTermination();
}
 
開發者ID:ogidogi,項目名稱:laughing-octo-sansa,代碼行數:44,代碼來源:KafkaSparkCassandraFlow.java


注:本文中的org.apache.spark.streaming.api.java.JavaDStream.print方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。