本文整理匯總了Java中org.apache.spark.api.java.JavaSparkContext.sc方法的典型用法代碼示例。如果您正苦於以下問題:Java JavaSparkContext.sc方法的具體用法?Java JavaSparkContext.sc怎麽用?Java JavaSparkContext.sc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.spark.api.java.JavaSparkContext
的用法示例。
在下文中一共展示了JavaSparkContext.sc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: validateLogisticRegressionAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public LogisticRegressionValidationSummary validateLogisticRegressionAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
LogisticRegressionDetectionModel logisticRegressionDetectionModel,
Indexing indexing, Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
LogisticRegressionDetectionAlgorithm logisticRegressionDetectionAlgorithm =
(LogisticRegressionDetectionAlgorithm) logisticRegressionDetectionModel.getDetectionAlgorithm();
LogisticRegressionValidationSummary logisticRegressionValidationSummary =
new LogisticRegressionValidationSummary(sc.sc(), logisticRegressionDetectionAlgorithm.getNumClasses(), indexing, marking);
LogisticRegressionDistJob logisticRegressionDistJob = new LogisticRegressionDistJob();
logisticRegressionDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
logisticRegressionDetectionModel,
logisticRegressionValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
logisticRegressionValidationSummary.setTotalValidationTime(time);
return logisticRegressionValidationSummary;
}
示例2: validateSVMAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public SVMValidationSummary validateSVMAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
SVMDetectionModel svmDetectionModel,
Indexing indexing, Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
SVMDetectionAlgorithm svmDetectionAlgorithm =
(SVMDetectionAlgorithm) svmDetectionModel.getDetectionAlgorithm();
SVMValidationSummary svmValidationSummary =
new SVMValidationSummary(sc.sc(),
2, indexing, marking);
SVMDistJob svmDistJob = new SVMDistJob();
svmDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
svmDetectionModel,
svmValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
svmValidationSummary.setTotalValidationTime(time);
return svmValidationSummary;
}
示例3: validateGradientBoostedTreesAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public GradientBoostedTreesValidationSummary validateGradientBoostedTreesAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
GradientBoostedTreesDetectionModel gradientBoostedTreesDetectionModel,
Indexing indexing, Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
GradientBoostedTreesDetectionAlgorithm gradientBoostedTreesDetectionAlgorithm =
(GradientBoostedTreesDetectionAlgorithm) gradientBoostedTreesDetectionModel.getDetectionAlgorithm();
GradientBoostedTreesValidationSummary gradientBoostedTreesValidationSummary =
new GradientBoostedTreesValidationSummary(sc.sc(),
gradientBoostedTreesDetectionAlgorithm.getNumClasses(), indexing, marking);
GradientBoostedTreesDistJob gradientBoostedTreesDistJob = new GradientBoostedTreesDistJob();
gradientBoostedTreesDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
gradientBoostedTreesDetectionModel,
gradientBoostedTreesValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
gradientBoostedTreesValidationSummary.setTotalValidationTime(time);
return gradientBoostedTreesValidationSummary;
}
示例4: validateRandomForestAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public RandomForestValidationSummary validateRandomForestAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
RandomForestDetectionModel randomForestDetectionModel,
Indexing indexing, Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
RandomForestDetectionAlgorithm randomForestDetectionAlgorithm = (RandomForestDetectionAlgorithm) randomForestDetectionModel.getDetectionAlgorithm();
RandomForestValidationSummary randomForestValidationSummary =
new RandomForestValidationSummary(sc.sc(), randomForestDetectionAlgorithm.getNumClasses(), indexing, marking);
RandomForestDistJob randomForestDistJob = new RandomForestDistJob();
randomForestDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
randomForestDetectionModel,
randomForestValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
randomForestValidationSummary.setTotalValidationTime(time);
return randomForestValidationSummary;
}
示例5: validateNaiveBayesAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public NaiveBayesValidationSummary validateNaiveBayesAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
NaiveBayesDetectionModel naiveBayesDetectionModel,
Indexing indexing, Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
NaiveBayesDetectionAlgorithm naiveBayesDetectionAlgorithm = (NaiveBayesDetectionAlgorithm) naiveBayesDetectionModel.getDetectionAlgorithm();
NaiveBayesValidationSummary naiveBayesValidationSummary =
new NaiveBayesValidationSummary(sc.sc(), naiveBayesDetectionAlgorithm.getNumClasses(), indexing, marking);
NaiveBayesDistJob naiveBayesDistJob = new NaiveBayesDistJob();
naiveBayesDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
naiveBayesDetectionModel,
naiveBayesValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
naiveBayesValidationSummary.setTotalValidationTime(time);
return naiveBayesValidationSummary;
}
示例6: validateDecisionTreeAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public DecisionTreeValidationSummary validateDecisionTreeAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DecisionTreeDetectionModel decisionTreeDetectionModel,
Indexing indexing, Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
DecisionTreeDetectionAlgorithm decisionTreeDetectionAlgorithm = (DecisionTreeDetectionAlgorithm) decisionTreeDetectionModel.getDetectionAlgorithm();
DecisionTreeValidationSummary decisionTreeValidationSummary =
new DecisionTreeValidationSummary(sc.sc(), decisionTreeDetectionAlgorithm.getNumClasses(), indexing, marking);
DecisionTreeDistJob decisionTreeDistJob = new DecisionTreeDistJob();
decisionTreeDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
decisionTreeDetectionModel,
decisionTreeValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
decisionTreeValidationSummary.setTotalValidationTime(time);
return decisionTreeValidationSummary;
}
示例7: validateGaussianMixtureAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public GaussianMixtureValidationSummary validateGaussianMixtureAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
GaussianMixtureDetectionModel gaussianMixtureDetectionModel,
Indexing indexing,
Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
GaussianMixtureDetectionAlgorithm gaussianMixtureDetectionAlgorithm = (GaussianMixtureDetectionAlgorithm) gaussianMixtureDetectionModel.getDetectionAlgorithm();
GaussianMixtureValidationSummary gaussianMixtureValidationSummary =
new GaussianMixtureValidationSummary(sc.sc(), gaussianMixtureDetectionAlgorithm.getK(), indexing, marking);
GaussianMixtureDistJob gaussianMixtureDistJob = new GaussianMixtureDistJob();
gaussianMixtureDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
gaussianMixtureDetectionModel,
gaussianMixtureValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
gaussianMixtureValidationSummary.setTotalValidationTime(time);
return gaussianMixtureValidationSummary;
}
示例8: validateKMeansAthenaFeatures
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public KmeansValidationSummary validateKMeansAthenaFeatures(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
KMeansDetectionModel kMeansDetectionModel,
Indexing indexing,
Marking marking) {
long start = System.nanoTime(); // <-- start
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
KMeansDetectionAlgorithm kMeansDetectionAlgorithm = (KMeansDetectionAlgorithm) kMeansDetectionModel.getDetectionAlgorithm();
KmeansValidationSummary kmeansValidationSummary =
new KmeansValidationSummary(sc.sc(), kMeansDetectionAlgorithm.getK(), indexing, marking);
KMeansDistJob KMeansDistJob = new KMeansDistJob();
KMeansDistJob.validate(mongoRDD,
athenaMLFeatureConfiguration,
kMeansDetectionModel,
kmeansValidationSummary);
long end = System.nanoTime(); // <-- start
long time = end - start;
kmeansValidationSummary.setTotalValidationTime(time);
return kmeansValidationSummary;
}
示例9: main
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {
SparkConf conf = new SparkConf().setAppName("SQLQueryBAM");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new HiveContext(sc.sc());
Options options = new Options();
Option opOpt = new Option( "out", true, "HDFS path for output files. If not present, the output files are not moved to HDFS." );
Option queryOpt = new Option( "query", true, "SQL query string." );
Option baminOpt = new Option( "in", true, "" );
options.addOption( opOpt );
options.addOption( queryOpt );
options.addOption( baminOpt );
CommandLineParser parser = new BasicParser();
CommandLine cmd = null;
try {
cmd = parser.parse( options, args );
}
catch( ParseException exp ) {
System.err.println( "Parsing failed. Reason: " + exp.getMessage() );
}
String bwaOutDir = (cmd.hasOption("out")==true)? cmd.getOptionValue("out"):null;
String query = (cmd.hasOption("query")==true)? cmd.getOptionValue("query"):null;
String bamin = (cmd.hasOption("in")==true)? cmd.getOptionValue("in"):null;
sc.hadoopConfiguration().setBoolean(BAMInputFormat.KEEP_PAIRED_READS_TOGETHER_PROPERTY, true);
//Read BAM/SAM from HDFS
JavaPairRDD<LongWritable, SAMRecordWritable> bamPairRDD = sc.newAPIHadoopFile(bamin, AnySAMInputFormat.class, LongWritable.class, SAMRecordWritable.class, sc.hadoopConfiguration());
//Map to SAMRecord RDD
JavaRDD<SAMRecord> samRDD = bamPairRDD.map(v1 -> v1._2().get());
JavaRDD<MyAlignment> rdd = samRDD.map(bam -> new MyAlignment(bam.getReadName(), bam.getStart(), bam.getReferenceName(), bam.getReadLength(), new String(bam.getReadBases(), StandardCharsets.UTF_8), bam.getCigarString(), bam.getReadUnmappedFlag(), bam.getDuplicateReadFlag()));
Dataset<Row> samDF = sqlContext.createDataFrame(rdd, MyAlignment.class);
samDF.registerTempTable(tablename);
if(query!=null) {
//Save as parquet file
Dataset df2 = sqlContext.sql(query);
df2.show(100,false);
if(bwaOutDir!=null)
df2.write().parquet(bwaOutDir);
}else{
if(bwaOutDir!=null)
samDF.write().parquet(bwaOutDir);
}
sc.stop();
}
示例10: generateLassoAthenaDetectionModel
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public LassoDetectionModel generateLassoAthenaDetectionModel(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DetectionAlgorithm detectionAlgorithm,
Indexing indexing,
Marking marking) {
LassoModelSummary lassoModelSummary = new LassoModelSummary(
sc.sc(), indexing, marking);
long start = System.nanoTime(); // <-- start
LassoDetectionAlgorithm lassoDetectionAlgorithm = (LassoDetectionAlgorithm) detectionAlgorithm;
LassoDetectionModel lassoDetectionModel = new LassoDetectionModel();
lassoDetectionModel.setLassoDetectionAlgorithm(lassoDetectionAlgorithm);
lassoModelSummary.setLassoDetectionAlgorithm(lassoDetectionAlgorithm);
lassoDetectionModel.setFeatureConstraint(featureConstraint);
lassoDetectionModel.setAthenaMLFeatureConfiguration(athenaMLFeatureConfiguration);
lassoDetectionModel.setIndexing(indexing);
lassoDetectionModel.setMarking(marking);
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
LassoDistJob lassoDistJob = new LassoDistJob();
LassoModel lassoModel = lassoDistJob.generateDecisionTreeWithPreprocessing(mongoRDD,
athenaMLFeatureConfiguration, lassoDetectionAlgorithm, marking, lassoModelSummary);
lassoDetectionModel.setModel(lassoModel);
long end = System.nanoTime(); // <-- start
long time = end - start;
lassoModelSummary.setTotalLearningTime(time);
lassoDetectionModel.setClassificationModelSummary(lassoModelSummary);
return lassoDetectionModel;
}
示例11: generateRidgeRegressionAthenaDetectionModel
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public RidgeRegressionDetectionModel generateRidgeRegressionAthenaDetectionModel(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DetectionAlgorithm detectionAlgorithm,
Indexing indexing,
Marking marking) {
RidgeRegressionModelSummary ridgeRegressionModelSummary = new RidgeRegressionModelSummary(
sc.sc(), indexing, marking);
long start = System.nanoTime(); // <-- start
RidgeRegressionDetectionAlgorithm ridgeRegressionDetectionAlgorithm = (RidgeRegressionDetectionAlgorithm) detectionAlgorithm;
RidgeRegressionDetectionModel ridgeRegressionDetectionModel = new RidgeRegressionDetectionModel();
ridgeRegressionDetectionModel.setRidgeRegressionDetectionAlgorithm(ridgeRegressionDetectionAlgorithm);
ridgeRegressionModelSummary.setRidgeRegressionDetectionAlgorithm(ridgeRegressionDetectionAlgorithm);
ridgeRegressionDetectionModel.setFeatureConstraint(featureConstraint);
ridgeRegressionDetectionModel.setAthenaMLFeatureConfiguration(athenaMLFeatureConfiguration);
ridgeRegressionDetectionModel.setIndexing(indexing);
ridgeRegressionDetectionModel.setMarking(marking);
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
RidgeRegressionDistJob ridgeRegressionDistJob = new RidgeRegressionDistJob();
RidgeRegressionModel ridgeRegressionModel = ridgeRegressionDistJob.generateDecisionTreeWithPreprocessing(mongoRDD,
athenaMLFeatureConfiguration, ridgeRegressionDetectionAlgorithm, marking, ridgeRegressionModelSummary);
ridgeRegressionDetectionModel.setModel(ridgeRegressionModel);
long end = System.nanoTime(); // <-- start
long time = end - start;
ridgeRegressionModelSummary.setTotalLearningTime(time);
ridgeRegressionDetectionModel.setClassificationModelSummary(ridgeRegressionModelSummary);
return ridgeRegressionDetectionModel;
}
示例12: generateLinearRegressionAthenaDetectionModel
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public LinearRegressionDetectionModel generateLinearRegressionAthenaDetectionModel(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DetectionAlgorithm detectionAlgorithm,
Indexing indexing,
Marking marking) {
LinearRegressionModelSummary linearRegressionModelSummary = new LinearRegressionModelSummary(
sc.sc(), indexing, marking);
long start = System.nanoTime(); // <-- start
LinearRegressionDetectionAlgorithm linearRegressionDetectionAlgorithm = (LinearRegressionDetectionAlgorithm) detectionAlgorithm;
LinearRegressionDetectionModel linearRegressionDetectionModel = new LinearRegressionDetectionModel();
linearRegressionDetectionModel.setLinearRegressionDetectionAlgorithm(linearRegressionDetectionAlgorithm);
linearRegressionModelSummary.setLinearRegressionDetectionAlgorithm(linearRegressionDetectionAlgorithm);
linearRegressionDetectionModel.setFeatureConstraint(featureConstraint);
linearRegressionDetectionModel.setAthenaMLFeatureConfiguration(athenaMLFeatureConfiguration);
linearRegressionDetectionModel.setIndexing(indexing);
linearRegressionDetectionModel.setMarking(marking);
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
LinearRegressionDistJob linearRegressionDistJob = new LinearRegressionDistJob();
LinearRegressionModel linearRegressionModel = linearRegressionDistJob.generateDecisionTreeWithPreprocessing(mongoRDD,
athenaMLFeatureConfiguration, linearRegressionDetectionAlgorithm, marking, linearRegressionModelSummary);
linearRegressionDetectionModel.setModel(linearRegressionModel);
long end = System.nanoTime(); // <-- start
long time = end - start;
linearRegressionModelSummary.setTotalLearningTime(time);
linearRegressionDetectionModel.setClassificationModelSummary(linearRegressionModelSummary);
return linearRegressionDetectionModel;
}
示例13: generateLogisticRegressionAthenaDetectionModel
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public LogisticRegressionDetectionModel generateLogisticRegressionAthenaDetectionModel(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DetectionAlgorithm detectionAlgorithm,
Indexing indexing,
Marking marking) {
LogisticRegressionModelSummary logisticRegressionModelSummary = new LogisticRegressionModelSummary(
sc.sc(), indexing, marking);
long start = System.nanoTime(); // <-- start
LogisticRegressionDetectionAlgorithm logisticRegressionDetectionAlgorithm = (LogisticRegressionDetectionAlgorithm) detectionAlgorithm;
LogisticRegressionDetectionModel logisticRegressionDetectionModel = new LogisticRegressionDetectionModel();
logisticRegressionDetectionModel.setLogisticRegressionDetectionAlgorithm(logisticRegressionDetectionAlgorithm);
logisticRegressionModelSummary.setLogisticRegressionDetectionAlgorithm(logisticRegressionDetectionAlgorithm);
logisticRegressionDetectionModel.setFeatureConstraint(featureConstraint);
logisticRegressionDetectionModel.setAthenaMLFeatureConfiguration(athenaMLFeatureConfiguration);
logisticRegressionDetectionModel.setIndexing(indexing);
logisticRegressionDetectionModel.setMarking(marking);
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
LogisticRegressionDistJob logisticRegressionDistJob = new LogisticRegressionDistJob();
LogisticRegressionModel logisticRegressionModel = logisticRegressionDistJob.generateDecisionTreeWithPreprocessing(mongoRDD,
athenaMLFeatureConfiguration, logisticRegressionDetectionAlgorithm, marking, logisticRegressionModelSummary);
logisticRegressionDetectionModel.setModel(logisticRegressionModel);
long end = System.nanoTime(); // <-- start
long time = end - start;
logisticRegressionModelSummary.setTotalLearningTime(time);
logisticRegressionDetectionModel.setClassificationModelSummary(logisticRegressionModelSummary);
return logisticRegressionDetectionModel;
}
示例14: generateSVMAthenaDetectionModel
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public SVMDetectionModel generateSVMAthenaDetectionModel(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DetectionAlgorithm detectionAlgorithm,
Indexing indexing,
Marking marking) {
SVMModelSummary svmModelSummary = new SVMModelSummary(
sc.sc(), indexing, marking);
long start = System.nanoTime(); // <-- start
SVMDetectionAlgorithm svmDetectionAlgorithm = (SVMDetectionAlgorithm) detectionAlgorithm;
SVMDetectionModel svmDetectionModel = new SVMDetectionModel();
svmDetectionModel.setSVMDetectionAlgorithm(svmDetectionAlgorithm);
svmModelSummary.setSVMDetectionAlgorithm(svmDetectionAlgorithm);
svmDetectionModel.setFeatureConstraint(featureConstraint);
svmDetectionModel.setAthenaMLFeatureConfiguration(athenaMLFeatureConfiguration);
svmDetectionModel.setIndexing(indexing);
svmDetectionModel.setMarking(marking);
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
SVMDistJob svmDistJob = new SVMDistJob();
SVMModel svmModel = svmDistJob.generateDecisionTreeWithPreprocessing(mongoRDD,
athenaMLFeatureConfiguration, svmDetectionAlgorithm, marking, svmModelSummary);
svmDetectionModel.setSVMModel(svmModel);
long end = System.nanoTime(); // <-- start
long time = end - start;
svmModelSummary.setTotalLearningTime(time);
svmDetectionModel.setClassificationModelSummary(svmModelSummary);
return svmDetectionModel;
}
示例15: generateGradientBoostedTreesAthenaDetectionModel
import org.apache.spark.api.java.JavaSparkContext; //導入方法依賴的package包/類
public GradientBoostedTreesDetectionModel generateGradientBoostedTreesAthenaDetectionModel(JavaSparkContext sc,
FeatureConstraint featureConstraint,
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
DetectionAlgorithm detectionAlgorithm,
Indexing indexing,
Marking marking) {
GradientBoostedTreesModelSummary gradientBoostedTreesModelSummary = new GradientBoostedTreesModelSummary(
sc.sc(), indexing, marking);
long start = System.nanoTime(); // <-- start
GradientBoostedTreesDetectionAlgorithm gradientBoostedTreesDetectionAlgorithm = (GradientBoostedTreesDetectionAlgorithm) detectionAlgorithm;
GradientBoostedTreesDetectionModel gradientBoostedTreesDetectionModel = new GradientBoostedTreesDetectionModel();
gradientBoostedTreesDetectionModel.setGradientBoostedTreesDetectionAlgorithm(gradientBoostedTreesDetectionAlgorithm);
gradientBoostedTreesModelSummary.setGradientBoostedTreesDetectionAlgorithm(gradientBoostedTreesDetectionAlgorithm);
gradientBoostedTreesDetectionModel.setFeatureConstraint(featureConstraint);
gradientBoostedTreesDetectionModel.setAthenaMLFeatureConfiguration(athenaMLFeatureConfiguration);
gradientBoostedTreesDetectionModel.setIndexing(indexing);
gradientBoostedTreesDetectionModel.setMarking(marking);
JavaPairRDD<Object, BSONObject> mongoRDD;
mongoRDD = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
GradientBoostedTreesDistJob gradientBoostedTreesDistJob = new GradientBoostedTreesDistJob();
GradientBoostedTreesModel decisionTreeModel = gradientBoostedTreesDistJob.generateDecisionTreeWithPreprocessing(mongoRDD,
athenaMLFeatureConfiguration, gradientBoostedTreesDetectionAlgorithm, marking, gradientBoostedTreesModelSummary);
gradientBoostedTreesDetectionModel.setGradientBoostedTreestModel(decisionTreeModel);
long end = System.nanoTime(); // <-- start
long time = end - start;
gradientBoostedTreesModelSummary.setTotalLearningTime(time);
gradientBoostedTreesDetectionModel.setClassificationModelSummary(gradientBoostedTreesModelSummary);
return gradientBoostedTreesDetectionModel;
}