當前位置: 首頁>>代碼示例>>Java>>正文


Java JavaRDD.cache方法代碼示例

本文整理匯總了Java中org.apache.spark.api.java.JavaRDD.cache方法的典型用法代碼示例。如果您正苦於以下問題:Java JavaRDD.cache方法的具體用法?Java JavaRDD.cache怎麽用?Java JavaRDD.cache使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.spark.api.java.JavaRDD的用法示例。


在下文中一共展示了JavaRDD.cache方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: rddPreProcessing

import org.apache.spark.api.java.JavaRDD; //導入方法依賴的package包/類
public JavaRDD<Vector> rddPreProcessing(JavaPairRDD<Object, BSONObject> mongoRDD,
                                        AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
                                        GaussianMixtureModelSummary gaussianMixtureModelSummary) {
    List<AthenaFeatureField> listOfTargetFeatures = athenaMLFeatureConfiguration.getListOfTargetFeatures();
    Map<AthenaFeatureField, Integer> weight = athenaMLFeatureConfiguration.getWeight();

    int numberOfTargetValue = listOfTargetFeatures.size();

    JavaRDD<Vector> parsedData = mongoRDD.map(
            (Function<Tuple2<Object, BSONObject>, Vector>) t -> {

                BSONObject feature = (BSONObject) t._2().get(AthenaFeatureField.FEATURE);
                BSONObject idx = (BSONObject) t._2();

                double[] values = new double[numberOfTargetValue];
                for (int j = 0; j < numberOfTargetValue; j++) {
                    if (feature.containsField(listOfTargetFeatures.get(j).getValue())) {
                        Object obj = feature.get(listOfTargetFeatures.get(j).getValue());
                        if (obj instanceof Long) {
                            values[j] = (Long) obj;
                        } else if (obj instanceof Double) {
                            values[j] = (Double) obj;
                        } else if (obj instanceof Boolean) {
                            values[j] = (Boolean) obj ? 1 : 0;
                        } else {
                            values[j] = 0;
                        }

                        //check weight
                        if (weight.containsKey(listOfTargetFeatures.get(j))) {
                            values[j] *= weight.get(listOfTargetFeatures.get(j));
                        }

                        //check absolute
                        if (athenaMLFeatureConfiguration.isAbsolute()){
                            values[j] = Math.abs(values[j]);
                        }
                    }
                }

                //remove errors
                for (int i = 0; i < numberOfTargetValue; i++) {
                    if (Double.isInfinite(values[i]) || Double.isNaN(values[i])) {
                        for (int j = 0; j < numberOfTargetValue; j++) {
                            values[j] = 0;

                        }
                        return Vectors.dense(values);
                    }
                }
                gaussianMixtureModelSummary.updateSummary(idx, feature);
                return Vectors.dense(values);
            }
    );

    Normalizer normalizer = new Normalizer();
    JavaRDD<Vector> normed;
    if (athenaMLFeatureConfiguration.isNormalization()) {
        normed = normalizer.transform(parsedData);
    } else {
        normed = parsedData;
    }

    normed.cache();
    return normed;
}
 
開發者ID:shlee89,項目名稱:athena,代碼行數:67,代碼來源:GaussianMixtureDistJob.java

示例2: rddPreProcessing

import org.apache.spark.api.java.JavaRDD; //導入方法依賴的package包/類
public JavaRDD<Vector> rddPreProcessing(JavaPairRDD<Object, BSONObject> mongoRDD,
                                            AthenaMLFeatureConfiguration athenaMLFeatureConfiguration,
                                            KmeansModelSummary kmeansModelSummary) {
        List<AthenaFeatureField> listOfTargetFeatures = athenaMLFeatureConfiguration.getListOfTargetFeatures();
        Map<AthenaFeatureField, Integer> weight = athenaMLFeatureConfiguration.getWeight();

        int numberOfTargetValue = listOfTargetFeatures.size();
//        int numberOfTargetValue = 5;

        JavaRDD<Vector> parsedData = mongoRDD.map(
                (Function<Tuple2<Object, BSONObject>, Vector>) t -> {

                    BSONObject feature = (BSONObject) t._2().get(AthenaFeatureField.FEATURE);
                    BSONObject idx = (BSONObject) t._2();

                    double[] values = new double[numberOfTargetValue];
                    for (int j = 0; j < numberOfTargetValue; j++) {
                        if (feature.containsField(listOfTargetFeatures.get(j).getValue())) {
                            Object obj = feature.get(listOfTargetFeatures.get(j).getValue());
                            if (obj instanceof Long) {
                                values[j] = (Long) obj;
                            } else if (obj instanceof Double) {
                                values[j] = (Double) obj;
                            } else if (obj instanceof Boolean) {
                                values[j] = (Boolean) obj ? 1 : 0;
                            } else {
                                values[j] = 0;
                            }

                            //check weight
                            if (weight.containsKey(listOfTargetFeatures.get(j))) {
                                values[j] *= weight.get(listOfTargetFeatures.get(j));
                            }
                            //check absolute
                            if (athenaMLFeatureConfiguration.isAbsolute()) {
                                values[j] = Math.abs(values[j]);
                            }
                        }
//                        values[j] = 0;
                    }

//                    //remove errors
                    for (int i = 0; i < numberOfTargetValue; i++) {
                        if (Double.isInfinite(values[i]) || Double.isNaN(values[i])) {
                            for (int j = 0; j < numberOfTargetValue; j++) {
                                values[j] = 0;

                            }
                            return Vectors.dense(values);
                        }
                    }
                    kmeansModelSummary.updateSummary(idx, feature);
                    return Vectors.dense(values);
                }
        );

        Normalizer normalizer = new Normalizer();
        JavaRDD<Vector> normed;
        if (athenaMLFeatureConfiguration.isNormalization()) {
            normed = normalizer.transform(parsedData);
        } else {
            normed = parsedData;
        }

        normed.cache();
        return normed;
    }
 
開發者ID:shlee89,項目名稱:athena,代碼行數:68,代碼來源:KMeansDistJob.java

示例3: buildModel

import org.apache.spark.api.java.JavaRDD; //導入方法依賴的package包/類
@Override
public PMML buildModel(JavaSparkContext sparkContext,
                       JavaRDD<String> trainData,
                       List<?> hyperParameters,
                       Path candidatePath) {
  int features = (Integer) hyperParameters.get(0);
  double lambda = (Double) hyperParameters.get(1);
  double alpha = (Double) hyperParameters.get(2);
  double epsilon = Double.NaN;
  if (logStrength) {
    epsilon = (Double) hyperParameters.get(3);
  }
  Preconditions.checkArgument(features > 0);
  Preconditions.checkArgument(lambda >= 0.0);
  Preconditions.checkArgument(alpha > 0.0);
  if (logStrength) {
    Preconditions.checkArgument(epsilon > 0.0);
  }

  JavaRDD<String[]> parsedRDD = trainData.map(MLFunctions.PARSE_FN);
  parsedRDD.cache();

  Map<String,Integer> userIDIndexMap = buildIDIndexMapping(parsedRDD, true);
  Map<String,Integer> itemIDIndexMap = buildIDIndexMapping(parsedRDD, false);

  log.info("Broadcasting ID-index mappings for {} users, {} items",
           userIDIndexMap.size(), itemIDIndexMap.size());

  Broadcast<Map<String,Integer>> bUserIDToIndex = sparkContext.broadcast(userIDIndexMap);
  Broadcast<Map<String,Integer>> bItemIDToIndex = sparkContext.broadcast(itemIDIndexMap);

  JavaRDD<Rating> trainRatingData = parsedToRatingRDD(parsedRDD, bUserIDToIndex, bItemIDToIndex);
  trainRatingData = aggregateScores(trainRatingData, epsilon);
  ALS als = new ALS()
      .setRank(features)
      .setIterations(iterations)
      .setLambda(lambda)
      .setCheckpointInterval(5);
  if (implicit) {
    als = als.setImplicitPrefs(true).setAlpha(alpha);
  }

  RDD<Rating> trainingRatingDataRDD = trainRatingData.rdd();
  trainingRatingDataRDD.cache();
  MatrixFactorizationModel model = als.run(trainingRatingDataRDD);
  trainingRatingDataRDD.unpersist(false);

  bUserIDToIndex.unpersist();
  bItemIDToIndex.unpersist();

  parsedRDD.unpersist();

  Broadcast<Map<Integer,String>> bUserIndexToID = sparkContext.broadcast(invertMap(userIDIndexMap));
  Broadcast<Map<Integer,String>> bItemIndexToID = sparkContext.broadcast(invertMap(itemIDIndexMap));

  PMML pmml = mfModelToPMML(model,
                            features,
                            lambda,
                            alpha,
                            epsilon,
                            implicit,
                            logStrength,
                            candidatePath,
                            bUserIndexToID,
                            bItemIndexToID);
  unpersist(model);

  bUserIndexToID.unpersist();
  bItemIndexToID.unpersist();

  return pmml;
}
 
開發者ID:oncewang,項目名稱:oryx2,代碼行數:73,代碼來源:ALSUpdate.java

示例4: evaluate

import org.apache.spark.api.java.JavaRDD; //導入方法依賴的package包/類
@Override
public double evaluate(JavaSparkContext sparkContext,
                       PMML model,
                       Path modelParentPath,
                       JavaRDD<String> testData,
                       JavaRDD<String> trainData) {

  JavaRDD<String[]> parsedTestRDD = testData.map(MLFunctions.PARSE_FN);
  parsedTestRDD.cache();

  Map<String,Integer> userIDToIndex = buildIDIndexOneWayMap(model, parsedTestRDD, true);
  Map<String,Integer> itemIDToIndex = buildIDIndexOneWayMap(model, parsedTestRDD, false);

  log.info("Broadcasting ID-index mappings for {} users, {} items",
           userIDToIndex.size(), itemIDToIndex.size());

  Broadcast<Map<String,Integer>> bUserIDToIndex = sparkContext.broadcast(userIDToIndex);
  Broadcast<Map<String,Integer>> bItemIDToIndex = sparkContext.broadcast(itemIDToIndex);

  JavaRDD<Rating> testRatingData = parsedToRatingRDD(parsedTestRDD, bUserIDToIndex, bItemIDToIndex);
  double epsilon = Double.NaN;
  if (logStrength) {
    epsilon = Double.parseDouble(AppPMMLUtils.getExtensionValue(model, "epsilon"));
  }
  testRatingData = aggregateScores(testRatingData, epsilon);

  MatrixFactorizationModel mfModel =
      pmmlToMFModel(sparkContext, model, modelParentPath, bUserIDToIndex, bItemIDToIndex);

  parsedTestRDD.unpersist();

  double eval;
  if (implicit) {
    double auc = Evaluation.areaUnderCurve(sparkContext, mfModel, testRatingData);
    log.info("AUC: {}", auc);
    eval = auc;
  } else {
    double rmse = Evaluation.rmse(mfModel, testRatingData);
    log.info("RMSE: {}", rmse);
    eval = -rmse;
  }
  unpersist(mfModel);

  bUserIDToIndex.unpersist();
  bItemIDToIndex.unpersist();

  return eval;
}
 
開發者ID:oncewang,項目名稱:oryx2,代碼行數:49,代碼來源:ALSUpdate.java


注:本文中的org.apache.spark.api.java.JavaRDD.cache方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。