本文整理匯總了Java中org.apache.spark.SparkConf.contains方法的典型用法代碼示例。如果您正苦於以下問題:Java SparkConf.contains方法的具體用法?Java SparkConf.contains怎麽用?Java SparkConf.contains使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.spark.SparkConf
的用法示例。
在下文中一共展示了SparkConf.contains方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: provide
import org.apache.spark.SparkConf; //導入方法依賴的package包/類
/**
* Provide a {@link JavaSparkContext} based on default settings
*
* @return a {@link JavaSparkContext} based on default settings
*/
public static JavaSparkContext provide() {
SparkConf config = new SparkConf()
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.registerKryoClasses(getSerializableClasses());
if (!config.contains("spark.app.name")) {
config.setAppName("RDF2X");
}
if (!config.contains("spark.master")) {
config.setMaster("local");
}
// set serialization registration required if you want to make sure you registered all your classes
// some spark internal classes will need to be registered as well
// config.set("spark.kryo.registrationRequired", "true");
log.info("Getting Spark Context for config: \n{}", config.toDebugString());
return new JavaSparkContext(config);
}
示例2: updateLocalConfiguration
import org.apache.spark.SparkConf; //導入方法依賴的package包/類
/**
* When using a persistent context the running Context's configuration will override a passed
* in configuration. Spark allows us to override these inherited properties via
* SparkContext.setLocalProperty
*/
private void updateLocalConfiguration(final JavaSparkContext sparkContext, final SparkConf sparkConfiguration) {
/*
* While we could enumerate over the entire SparkConfiguration and copy into the Thread
* Local properties of the Spark Context this could cause adverse effects with future
* versions of Spark. Since the api for setting multiple local properties at once is
* restricted as private, we will only set those properties we know can effect SparkGraphComputer
* Execution rather than applying the entire configuration.
*/
final String[] validPropertyNames = {
"spark.job.description",
"spark.jobGroup.id",
"spark.job.interruptOnCancel",
"spark.scheduler.pool"
};
for (String propertyName : validPropertyNames) {
if (sparkConfiguration.contains(propertyName)) {
String propertyValue = sparkConfiguration.get(propertyName);
this.logger.info("Setting Thread Local SparkContext Property - "
+ propertyName + " : " + propertyValue);
sparkContext.setLocalProperty(propertyName, sparkConfiguration.get(propertyName));
}
}
}
示例3: createSparkContext
import org.apache.spark.SparkConf; //導入方法依賴的package包/類
private static JavaSparkContext createSparkContext(SparkContextOptions contextOptions) {
if (usesProvidedSparkContext) {
LOG.info("Using a provided Spark Context");
JavaSparkContext jsc = contextOptions.getProvidedSparkContext();
if (jsc == null || jsc.sc().isStopped()){
LOG.error("The provided Spark context " + jsc + " was not created or was stopped");
throw new RuntimeException("The provided Spark context was not created or was stopped");
}
return jsc;
} else {
LOG.info("Creating a brand new Spark Context.");
SparkConf conf = new SparkConf();
if (!conf.contains("spark.master")) {
// set master if not set.
conf.setMaster(contextOptions.getSparkMaster());
}
if (contextOptions.getFilesToStage() != null && !contextOptions.getFilesToStage().isEmpty()) {
conf.setJars(contextOptions.getFilesToStage().toArray(new String[0]));
}
conf.setAppName(contextOptions.getAppName());
// register immutable collections serializers because the SDK uses them.
conf.set("spark.kryo.registrator", BeamSparkRunnerRegistrator.class.getName());
return new JavaSparkContext(conf);
}
}