本文整理匯總了Java中org.apache.lucene.store.RAMDirectory.close方法的典型用法代碼示例。如果您正苦於以下問題:Java RAMDirectory.close方法的具體用法?Java RAMDirectory.close怎麽用?Java RAMDirectory.close使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.lucene.store.RAMDirectory
的用法示例。
在下文中一共展示了RAMDirectory.close方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: testReadWrite
import org.apache.lucene.store.RAMDirectory; //導入方法依賴的package包/類
@Test
public void testReadWrite() {
Vector v1 = new ComplexVector(new short[] { -1, 8000, 16000 });
RAMDirectory directory = new RAMDirectory();
try {
IndexOutput indexOutput = directory.createOutput("complexvectors.bin", IOContext.DEFAULT);
v1.writeToLuceneStream(indexOutput);
indexOutput.close();
IndexInput indexInput = directory.openInput("complexvectors.bin", IOContext.DEFAULT);
ComplexVector cv2 = new ComplexVector(3, Mode.POLAR_SPARSE);
cv2.readFromLuceneStream(indexInput);
assertFloatArrayEquals(
new float[] {0, 0, -0.997290f, 0.073564f, 0.989176f, -0.1467304f},
cv2.getCoordinates(), TOL);
} catch (IOException e) {
e.printStackTrace();
fail();
}
directory.close();
}
示例2: testGenerateRandomVectorWriteAndRead
import org.apache.lucene.store.RAMDirectory; //導入方法依賴的package包/類
@Test
public void testGenerateRandomVectorWriteAndRead() {
Random random = new Random(0);
Vector vector = VectorFactory.generateRandomVector(VectorType.BINARY, 64, 2, random);
assertEquals("1100001111010001111111011010000000111011100001100010010010001111", vector.writeToString());
RAMDirectory directory = new RAMDirectory();
try {
IndexOutput indexOutput = directory.createOutput("binaryvectors.bin", IOContext.DEFAULT);
vector.writeToLuceneStream(indexOutput);
indexOutput.close();
IndexInput indexInput = directory.openInput("binaryvectors.bin", IOContext.DEFAULT);
Vector vector2 = VectorFactory.createZeroVector(VectorType.BINARY, 64);
assertEquals("0000000000000000000000000000000000000000000000000000000000000000", vector2.writeToString());
vector2.readFromLuceneStream(indexInput);
assertEquals("1100001111010001111111011010000000111011100001100010010010001111", vector2.writeToString());
} catch (IOException e) {
e.printStackTrace();
fail();
}
directory.close();
}
示例3: testSave
import org.apache.lucene.store.RAMDirectory; //導入方法依賴的package包/類
public void testSave() throws IOException {
final int valueCount = TestUtil.nextInt(random(), 1, 2048);
for (int bpv = 1; bpv <= 64; ++bpv) {
final int maxValue = (int) Math.min(PackedInts.maxValue(31), PackedInts.maxValue(bpv));
final RAMDirectory directory = new RAMDirectory();
List<PackedInts.Mutable> packedInts = createPackedInts(valueCount, bpv);
for (PackedInts.Mutable mutable : packedInts) {
for (int i = 0; i < mutable.size(); ++i) {
mutable.set(i, random().nextInt(maxValue));
}
IndexOutput out = directory.createOutput("packed-ints.bin", IOContext.DEFAULT);
mutable.save(out);
out.close();
IndexInput in = directory.openInput("packed-ints.bin", IOContext.DEFAULT);
PackedInts.Reader reader = PackedInts.getReader(in);
assertEquals(valueCount, reader.size());
if (mutable instanceof Packed64SingleBlock) {
// make sure that we used the right format so that the reader has
// the same performance characteristics as the mutable that has been
// serialized
assertTrue(reader instanceof Packed64SingleBlock);
} else {
assertFalse(reader instanceof Packed64SingleBlock);
}
for (int i = 0; i < valueCount; ++i) {
assertEquals(mutable.get(i), reader.get(i));
}
in.close();
directory.deleteFile("packed-ints.bin");
}
directory.close();
}
}
示例4: close
import org.apache.lucene.store.RAMDirectory; //導入方法依賴的package包/類
@Override
public synchronized void close()
{
for ( RAMDirectory ramDirectory : directories.values() )
{
ramDirectory.close();
}
directories.clear();
}
示例5: testWickedLongTerm
import org.apache.lucene.store.RAMDirectory; //導入方法依賴的package包/類
/**
* Make sure we skip wicked long terms.
*/
public void testWickedLongTerm() throws IOException {
RAMDirectory dir = new RAMDirectory();
IndexWriter writer = new IndexWriter(dir, new IndexWriterConfig(TEST_VERSION_CURRENT, new ClassicAnalyzer()));
char[] chars = new char[IndexWriter.MAX_TERM_LENGTH];
Arrays.fill(chars, 'x');
Document doc = new Document();
final String bigTerm = new String(chars);
// This produces a too-long term:
String contents = "abc xyz x" + bigTerm + " another term";
doc.add(new TextField("content", contents, Field.Store.NO));
writer.addDocument(doc);
// Make sure we can add another normal document
doc = new Document();
doc.add(new TextField("content", "abc bbb ccc", Field.Store.NO));
writer.addDocument(doc);
writer.close();
IndexReader reader = IndexReader.open(dir);
// Make sure all terms < max size were indexed
assertEquals(2, reader.docFreq(new Term("content", "abc")));
assertEquals(1, reader.docFreq(new Term("content", "bbb")));
assertEquals(1, reader.docFreq(new Term("content", "term")));
assertEquals(1, reader.docFreq(new Term("content", "another")));
// Make sure position is still incremented when
// massive term is skipped:
DocsAndPositionsEnum tps = MultiFields.getTermPositionsEnum(reader,
MultiFields.getLiveDocs(reader),
"content",
new BytesRef("another"));
assertTrue(tps.nextDoc() != DocIdSetIterator.NO_MORE_DOCS);
assertEquals(1, tps.freq());
assertEquals(3, tps.nextPosition());
// Make sure the doc that has the massive term is in
// the index:
assertEquals("document with wicked long term should is not in the index!", 2, reader.numDocs());
reader.close();
// Make sure we can add a document with exactly the
// maximum length term, and search on that term:
doc = new Document();
doc.add(new TextField("content", bigTerm, Field.Store.NO));
ClassicAnalyzer sa = new ClassicAnalyzer();
sa.setMaxTokenLength(100000);
writer = new IndexWriter(dir, new IndexWriterConfig(TEST_VERSION_CURRENT, sa));
writer.addDocument(doc);
writer.close();
reader = IndexReader.open(dir);
assertEquals(1, reader.docFreq(new Term("content", bigTerm)));
reader.close();
dir.close();
}
示例6: getCosineSimilarityMatrix
import org.apache.lucene.store.RAMDirectory; //導入方法依賴的package包/類
public static DocVector[] getCosineSimilarityMatrix(List<String> fileSentences) throws IOException{
RAMDirectory ramDir = new RAMDirectory();
FileReader fr=new FileReader(new File("lib/stoplists/en.txt"));
// Set<String> stopWords = new HashSet<String>(FileUtils.readLines(new File("stop-words.txt")));
Analyzer analyzer = new StopAnalyzer(Version.LUCENE_36, fr );
//Index the full text of both documents
//IndexWriter writer = new IndexWriter(ramDir, new StandardAnalyzer(Version.LUCENE_36), true, IndexWriter.MaxFieldLength.UNLIMITED);
IndexWriter writer =new IndexWriter(ramDir, new IndexWriterConfig(Version.LUCENE_36, analyzer));
for (String s:fileSentences)
{
Document doc1 = new Document();
StringReader d1reader=new StringReader(s);
doc1.add(new Field("contents", d1reader, TermVector.YES));
writer.addDocument(doc1);
}
// writer.commit();
writer.close();
DocVector[] docs = new DocVector[fileSentences.size()];
//Build a term vector for each document
IndexReader RAMreader = IndexReader.open(ramDir);
Map<String,Integer> terms = new HashMap<String,Integer>();
TermEnum termEnum = RAMreader.terms(new Term("contents"));
//System.out.println(RAMreader.numDocs());
int pos = 0;
while (termEnum.next()) {
Term term = termEnum.term();
if (!"contents".equals(term.field()))
break;
terms.put(term.text(), pos++);
}
//System.out.println("Num terms:"+terms.size());
for(int i=0;i<fileSentences.size();i++)
{
TermFreqVector[] tfvs = RAMreader.getTermFreqVectors(i);
docs[i]=new DocVector(terms);
if (tfvs==null)
continue;
for (TermFreqVector tfv : tfvs)
{
String[] termTexts = tfv.getTerms();
int[] termFreqs = tfv.getTermFrequencies();
for (int j = 0; j < termTexts.length; j++) {
double idfValue=getIDF(RAMreader,termTexts[j]);
double tfIdfValue=termFreqs[j]*idfValue;
docs[i].setEntry(termTexts[j], tfIdfValue);
}
}
docs[i].normalize();
}
RAMreader.close();
ramDir.close();
//ramDir.close();
//System.out.println(RAMreader.numDocs());
//System.out.println("Similarity:" + calcCosineSimilarity(docs[5], docs[19]));
return docs;
}