本文整理匯總了Java中org.apache.lucene.search.Explanation.match方法的典型用法代碼示例。如果您正苦於以下問題:Java Explanation.match方法的具體用法?Java Explanation.match怎麽用?Java Explanation.match使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.lucene.search.Explanation
的用法示例。
在下文中一共展示了Explanation.match方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: explain
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explain(LeafReaderContext context, int doc,
float finalScore, List<Explanation> featureExplanations) {
String modelDescription = "";
for (int layer = 0; layer < weightMatrices.size(); layer++) {
float[][] weightMatrix = weightMatrices.get(layer);
int numRows = weightMatrix.length;
int numCols = weightMatrix[0].length;
if (layer == 0) {
modelDescription += String.format("Input has %1$d features.", numCols - 1);
} else {
modelDescription += String.format("%nHidden layer #%1$d has %2$d units.", layer, numCols);
}
}
return Explanation.match(finalScore, modelDescription);
}
示例2: explainTFNorm
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
private Explanation explainTFNorm(int doc, Explanation freq, BM25StatsFixed stats, NumericDocValues norms) {
List<Explanation> subs = new ArrayList<>();
subs.add(freq);
subs.add(Explanation.match(k1, "parameter k1"));
if (norms == null) {
subs.add(Explanation.match(0, "parameter b (norms omitted for field)"));
return Explanation.match(
(freq.getValue() * (k1 + 1)) / (freq.getValue() + k1),
"tfNorm, computed from:", subs);
} else {
float doclen = norms.get(doc);
subs.add(Explanation.match(b, "parameter b"));
subs.add(Explanation.match(stats.avgdl, "avgFieldLength"));
subs.add(Explanation.match(doclen, "fieldLength"));
return Explanation.match(
(freq.getValue() * (k1 + 1)) / (freq.getValue() + k1 * (1 - b + b * doclen/stats.avgdl)),
"tfNorm, computed from:", subs);
}
}
開發者ID:sebastian-hofstaetter,項目名稱:ir-generalized-translation-models,代碼行數:20,代碼來源:BM25SimilarityLossless.java
示例3: explain
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explain(int topLevelDocId, SearchContext context, RescoreSearchContext rescoreContext,
Explanation sourceExplanation) throws IOException {
QueryRescoreContext rescore = (QueryRescoreContext) rescoreContext;
ContextIndexSearcher searcher = context.searcher();
if (sourceExplanation == null) {
// this should not happen but just in case
return Explanation.noMatch("nothing matched");
}
// TODO: this isn't right? I.e., we are incorrectly pretending all first pass hits were rescored? If the requested docID was
// beyond the top rescoreContext.window() in the first pass hits, we don't rescore it now?
Explanation rescoreExplain = searcher.explain(rescore.query(), topLevelDocId);
float primaryWeight = rescore.queryWeight();
Explanation prim;
if (sourceExplanation.isMatch()) {
prim = Explanation.match(
sourceExplanation.getValue() * primaryWeight,
"product of:", sourceExplanation, Explanation.match(primaryWeight, "primaryWeight"));
} else {
prim = Explanation.noMatch("First pass did not match", sourceExplanation);
}
// NOTE: we don't use Lucene's Rescorer.explain because we want to insert our own description with which ScoreMode was used. Maybe
// we should add QueryRescorer.explainCombine to Lucene?
if (rescoreExplain != null && rescoreExplain.isMatch()) {
float secondaryWeight = rescore.rescoreQueryWeight();
Explanation sec = Explanation.match(
rescoreExplain.getValue() * secondaryWeight,
"product of:",
rescoreExplain, Explanation.match(secondaryWeight, "secondaryWeight"));
QueryRescoreMode scoreMode = rescore.scoreMode();
return Explanation.match(
scoreMode.combine(prim.getValue(), sec.getValue()),
scoreMode + " of:",
prim, sec);
} else {
return prim;
}
}
示例4: parseExplanation
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
private static Explanation parseExplanation(XContentParser parser) throws IOException {
ensureExpectedToken(XContentParser.Token.START_OBJECT, parser.currentToken(), parser::getTokenLocation);
XContentParser.Token token;
Float value = null;
String description = null;
List<Explanation> details = new ArrayList<>();
while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) {
ensureExpectedToken(XContentParser.Token.FIELD_NAME, token, () -> parser.getTokenLocation());
String currentFieldName = parser.currentName();
token = parser.nextToken();
if (Fields.VALUE.equals(currentFieldName)) {
value = parser.floatValue();
} else if (Fields.DESCRIPTION.equals(currentFieldName)) {
description = parser.textOrNull();
} else if (Fields.DETAILS.equals(currentFieldName)) {
ensureExpectedToken(XContentParser.Token.START_ARRAY, token, () -> parser.getTokenLocation());
while ((token = parser.nextToken()) != XContentParser.Token.END_ARRAY) {
details.add(parseExplanation(parser));
}
} else {
throwUnknownField(currentFieldName, parser.getTokenLocation());
}
}
if (value == null) {
throw new ParsingException(parser.getTokenLocation(), "missing explanation value");
}
if (description == null) {
throw new ParsingException(parser.getTokenLocation(), "missing explanation description");
}
return Explanation.match(value, description, details);
}
示例5: readExplanation
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
public static Explanation readExplanation(StreamInput in) throws IOException {
boolean match = in.readBoolean();
String description = in.readString();
final Explanation[] subExplanations = new Explanation[in.readVInt()];
for (int i = 0; i < subExplanations.length; ++i) {
subExplanations[i] = readExplanation(in);
}
if (match) {
return Explanation.match(in.readFloat(), description, subExplanations);
} else {
return Explanation.noMatch(description, subExplanations);
}
}
示例6: explainScore
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
private Explanation explainScore(int doc, Explanation freq, BM25StatsFixed stats, NumericDocValues norms) {
Explanation boostExpl = Explanation.match(stats.boost, "boost");
List<Explanation> subs = new ArrayList<>();
if (boostExpl.getValue() != 1.0f)
subs.add(boostExpl);
subs.add(stats.idf);
Explanation tfNormExpl = explainTFNorm(doc, freq, stats, norms);
subs.add(tfNormExpl);
return Explanation.match(
boostExpl.getValue() * stats.idf.getValue() * tfNormExpl.getValue(),
"score(doc="+doc+",freq="+freq+"), product of:", subs);
}
開發者ID:sebastian-hofstaetter,項目名稱:ir-generalized-translation-models,代碼行數:13,代碼來源:BM25SimilarityLossless.java
示例7: explain
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explain(int topLevelDocId, SearchContext context, RescoreSearchContext rescoreContext,
Explanation sourceExplanation) throws IOException {
QueryRescoreContext rescore = (QueryRescoreContext) rescoreContext;
ContextIndexSearcher searcher = context.searcher();
if (sourceExplanation == null) {
// this should not happen but just in case
return Explanation.noMatch("nothing matched");
}
// TODO: this isn't right? I.e., we are incorrectly pretending all first pass hits were rescored? If the requested docID was
// beyond the top rescoreContext.window() in the first pass hits, we don't rescore it now?
Explanation rescoreExplain = searcher.explain(rescore.query(), topLevelDocId);
float primaryWeight = rescore.queryWeight();
Explanation prim;
if (sourceExplanation.isMatch()) {
prim = Explanation.match(
sourceExplanation.getValue() * primaryWeight,
"product of:", sourceExplanation, Explanation.match(primaryWeight, "primaryWeight"));
} else {
prim = Explanation.noMatch("First pass did not match", sourceExplanation);
}
// NOTE: we don't use Lucene's Rescorer.explain because we want to insert our own description with which ScoreMode was used. Maybe
// we should add QueryRescorer.explainCombine to Lucene?
if (rescoreExplain != null && rescoreExplain.isMatch()) {
float secondaryWeight = rescore.rescoreQueryWeight();
Explanation sec = Explanation.match(
rescoreExplain.getValue() * secondaryWeight,
"product of:",
rescoreExplain, Explanation.match(secondaryWeight, "secondaryWeight"));
ScoreMode scoreMode = rescore.scoreMode();
return Explanation.match(
scoreMode.combine(prim.getValue(), sec.getValue()),
scoreMode + " of:",
prim, sec);
} else {
return prim;
}
}
示例8: explainFunction
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explainFunction(String valueExpl, double value, double scale) {
return Explanation.match(
(float) evaluate(value, scale),
"max(0.0, ((" + scale + " - " + valueExpl + ")/" + scale + ")");
}
示例9: explainFunction
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explainFunction(String valueExpl, double value, double scale) {
return Explanation.match(
(float) evaluate(value, scale),
"exp(- " + valueExpl + " * " + -1 * scale + ")");
}
示例10: explainWeight
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
public Explanation explainWeight() {
return Explanation.match(getWeight(), "weight");
}
示例11: explain
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explain(Explanation subQueryScore) throws IOException {
Explanation scoreExp = Explanation.match(subQueryScore.getValue(), "_score: ", subQueryScore);
return Explanation.match((float) (runAsDouble()), "This script returned " + runAsDouble(), scoreExp);
}
示例12: explain
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
@Override
public Explanation explain(LeafReaderContext context, int doc) throws IOException {
return Explanation.match(getBoost(), "not implemented yet...");
}
示例13: idfExplain
import org.apache.lucene.search.Explanation; //導入方法依賴的package包/類
/**
* Computes a score factor for a phrase.
*
* <p>
* The default implementation sums the idf factor for
* each term in the phrase.
*
* @param collectionStats collection-level statistics
* @param termStats term-level statistics for the terms in the phrase
* @return an Explain object that includes both an idf
* score factor for the phrase and an explanation
* for each term.
*/
public Explanation idfExplain(CollectionStatistics collectionStats, TermStatistics termStats[]) {
final long docCount = collectionStats.docCount() == -1 ? collectionStats.maxDoc() : collectionStats.docCount();
float idf = 0.0f;
List<Explanation> details = new ArrayList<>();
for (final TermStatistics stat : termStats ) {
final long df = stat.docFreq();
final float termIdf = idf(df, docCount);
details.add(Explanation.match(termIdf, "idf(docFreq=" + df + ", docCount=" + docCount + ")"));
idf += termIdf;
}
return Explanation.match(idf, "idf(), sum of:", details);
}
開發者ID:sebastian-hofstaetter,項目名稱:ir-generalized-translation-models,代碼行數:26,代碼來源:BM25SimilarityLossless.java