本文整理匯總了Java中org.apache.hadoop.mapreduce.Mapper.Context.getConfiguration方法的典型用法代碼示例。如果您正苦於以下問題:Java Context.getConfiguration方法的具體用法?Java Context.getConfiguration怎麽用?Java Context.getConfiguration使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapreduce.Mapper.Context
的用法示例。
在下文中一共展示了Context.getConfiguration方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getSentiFile
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
private void getSentiFile(Context context) throws IOException {
Configuration conf = context.getConfiguration();
String swnPath = conf.get("sentwordnetfile");
System.out.println("@@@ Path: " + swnPath);
this.linhas = new ArrayList<String>();
try{
Path pt=new Path(swnPath);
FileSystem fs = FileSystem.get(new Configuration());
BufferedReader br=new BufferedReader(new InputStreamReader(fs.open(pt)));
String line;
line=br.readLine();
while (line != null){
linhas.add(line);
line=br.readLine();
}
}catch(Exception e){
System.out.println("@@@@ ERRO: " + e.getMessage());
throw new IOException(e);
}
sdc = new SentiWordNetDemoCode(linhas);
}
示例2: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
protected void setup(Context context) throws IOException, InterruptedException {
super.setup(context);
Configuration conf = context.getConfiguration();
// Instantiate a copy of the user's class to hold and parse the record.
String recordClassName = conf.get(
ExportJobBase.SQOOP_EXPORT_TABLE_CLASS_KEY);
if (null == recordClassName) {
throw new IOException("Export table class name ("
+ ExportJobBase.SQOOP_EXPORT_TABLE_CLASS_KEY
+ ") is not set!");
}
try {
Class cls = Class.forName(recordClassName, true,
Thread.currentThread().getContextClassLoader());
recordImpl = (SqoopRecord) ReflectionUtils.newInstance(cls, conf);
} catch (ClassNotFoundException cnfe) {
throw new IOException(cnfe);
}
if (null == recordImpl) {
throw new IOException("Could not instantiate object of type "
+ recordClassName);
}
columnTypes = DefaultStringifier.load(conf, AVRO_COLUMN_TYPES_MAP,
MapWritable.class);
}
示例3: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
public void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
multipleOutputs = new MultipleOutputs(context);
lowerBoundary = conf.get("LOWER_DATE");
upperBoundary = conf.get("HIGHER_DATE");
}
示例4: JobHistoryFileReplayHelper
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
JobHistoryFileReplayHelper(Context context) throws IOException {
Configuration conf = context.getConfiguration();
int taskId = context.getTaskAttemptID().getTaskID().getId();
int size = conf.getInt(MRJobConfig.NUM_MAPS,
TimelineServicePerformance.NUM_MAPS_DEFAULT);
replayMode = conf.getInt(JobHistoryFileReplayHelper.REPLAY_MODE,
JobHistoryFileReplayHelper.REPLAY_MODE_DEFAULT);
String processingDir =
conf.get(JobHistoryFileReplayHelper.PROCESSING_PATH);
Path processingPath = new Path(processingDir);
FileSystem processingFs = processingPath.getFileSystem(conf);
parser = new JobHistoryFileParser(processingFs);
jobFiles = selectJobFiles(processingFs, processingPath, taskId, size);
}
示例5: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
overrideRdfContext = conf.getBoolean(OVERRIDE_CONTEXT_PROPERTY, false);
String defCtx = conf.get(DEFAULT_CONTEXT_PROPERTY);
defaultRdfContext = defCtx == null ? null : SimpleValueFactory.getInstance().createIRI(defCtx);
decimationFactor = conf.getInt(DECIMATION_FACTOR_PROPERTY, DEFAULT_DECIMATION_FACTOR);
for (byte b = 1; b < 6; b++) {
context.write(new ImmutableBytesWritable(new byte[] {b}), new LongWritable(1));
}
timestamp = conf.getLong(DEFAULT_TIMESTAMP_PROPERTY, System.currentTimeMillis());
}
示例6: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stu
super.setup(context);
//read data to memory on the mapper.
myMap = new HashMap<String,String>();
Configuration conf = context.getConfiguration();
String mybusinessdataPath = conf.get("businessdata");
//e.g /user/hue/input/
Path part=new Path("hdfs://cshadoop1"+mybusinessdataPath);//Location of file in HDFS
FileSystem fs = FileSystem.get(conf);
FileStatus[] fss = fs.listStatus(part);
for (FileStatus status : fss) {
Path pt = status.getPath();
BufferedReader br=new BufferedReader(new InputStreamReader(fs.open(pt)));
String line;
line=br.readLine();
while (line != null){
String[] arr=line.split("\\^");
if(arr.length == 3){
myMap.put(arr[0].trim(), line); //businessid and the remain datacolumns
}
line=br.readLine();
}
}
}
示例7: run
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
public void run(Context context) throws IOException, InterruptedException {
this.conf = context.getConfiguration();
setup(context);
initCpImportProcess();
try {
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
cleanup(context);
} finally {
// Shut down the cpimport process.
closeExportHandles();
}
}
示例8: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
protected void setup(Context context) {
this.conf = context.getConfiguration();
// TODO: Support additional encodings.
// rtw-TODO: figure out if this is relevant
this.cpCharSet = MySQLUtils.MYSQL_DEFAULT_CHARSET;
}
示例9: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
public void setup(Context context) {
Configuration conf = context.getConfiguration();
noGram = conf.getInt("noGram", 5);
}
示例10: map
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
public void map(IntWritable key, IntWritable val, Context context) throws IOException {
TimelineClient tlc = new TimelineClientImpl();
Configuration conf = context.getConfiguration();
final int kbs = conf.getInt(KBS_SENT, KBS_SENT_DEFAULT);
long totalTime = 0;
final int testtimes = conf.getInt(TEST_TIMES, TEST_TIMES_DEFAULT);
final Random rand = new Random();
final TaskAttemptID taskAttemptId = context.getTaskAttemptID();
final char[] payLoad = new char[kbs * 1024];
for (int i = 0; i < testtimes; i++) {
// Generate a fixed length random payload
for (int xx = 0; xx < kbs * 1024; xx++) {
int alphaNumIdx =
rand.nextInt(ALPHA_NUMS.length);
payLoad[xx] = ALPHA_NUMS[alphaNumIdx];
}
String entId = taskAttemptId + "_" + Integer.toString(i);
final TimelineEntity entity = new TimelineEntity();
entity.setEntityId(entId);
entity.setEntityType("FOO_ATTEMPT");
entity.addOtherInfo("PERF_TEST", payLoad);
// add an event
TimelineEvent event = new TimelineEvent();
event.setTimestamp(System.currentTimeMillis());
event.setEventType("foo_event");
entity.addEvent(event);
// use the current user for this purpose
UserGroupInformation ugi = UserGroupInformation.getCurrentUser();
long startWrite = System.nanoTime();
try {
tlc.putEntities(entity);
} catch (Exception e) {
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_FAILURES).
increment(1);
LOG.error("writing to the timeline service failed", e);
}
long endWrite = System.nanoTime();
totalTime += TimeUnit.NANOSECONDS.toMillis(endWrite-startWrite);
}
LOG.info("wrote " + testtimes + " entities (" + kbs*testtimes +
" kB) in " + totalTime + " ms");
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_TIME).
increment(totalTime);
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_COUNTER).
increment(testtimes);
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_KBS).
increment(kbs*testtimes);
}
示例11: cleanup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
HalyardTableUtils.getTable(conf, conf.get(TABLE_PROPERTY), true, splits.toArray(new byte[splits.size()][])).close();
}
示例12: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
@Override
protected void setup(Context context) throws IOException, InterruptedException {
super.setup(context); //To change body of overridden methods use File | Settings | File Templates.
Configuration conf = context.getConfiguration();
URI[] files = DistributedCache.getCacheFiles(conf);
if (files == null || files.length < 2) {
throw new IOException("not enough paths in the DistributedCache");
}
dataset = Dataset.load(conf, new Path(files[0].getPath()));
converter = new DataConverter(dataset);
ruleBase = RuleBase.load(conf, new Path(files[1].getPath()));
if (ruleBase == null) {
throw new InterruptedException("Model not found!");
}
}
示例13: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
/**
* Configures the Reduce plan, the POPackage operator
* and the reporter thread
*/
@SuppressWarnings("unchecked")
@Override
protected void setup(Context context) throws IOException, InterruptedException {
super.setup(context);
inIllustrator = inIllustrator(context);
if (inIllustrator)
pack = getPack(context);
Configuration jConf = context.getConfiguration();
SpillableMemoryManager.configure(ConfigurationUtil.toProperties(jConf));
sJobContext = context;
sJobConfInternal.set(context.getConfiguration());
sJobConf = context.getConfiguration();
try {
PigContext.setPackageImportList((ArrayList<String>)ObjectSerializer.deserialize(jConf.get("udf.import.list")));
pigContext = (PigContext)ObjectSerializer.deserialize(jConf.get("pig.pigContext"));
if (rp == null)
rp = (PhysicalPlan) ObjectSerializer.deserialize(jConf
.get("pig.reducePlan"));
stores = PlanHelper.getStores(rp);
if (!inIllustrator)
pack = (POPackage)ObjectSerializer.deserialize(jConf.get("pig.reduce.package"));
// To be removed
if(rp.isEmpty())
log.debug("Reduce Plan empty!");
else{
ByteArrayOutputStream baos = new ByteArrayOutputStream();
rp.explain(baos);
log.debug(baos.toString());
}
pigReporter = new ProgressableReporter();
if(!(rp.isEmpty())) {
roots = rp.getRoots().toArray(new PhysicalOperator[1]);
leaf = rp.getLeaves().get(0);
}
// Get the UDF specific context
MapRedUtil.setupUDFContext(jConf);
} catch (IOException ioe) {
String msg = "Problem while configuring reduce plan.";
throw new RuntimeException(msg, ioe);
}
}
示例14: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //導入方法依賴的package包/類
/**
* Configures the mapper with the map plan and the
* reproter thread
*/
@SuppressWarnings("unchecked")
@Override
public void setup(Context context) throws IOException, InterruptedException {
super.setup(context);
Configuration job = context.getConfiguration();
SpillableMemoryManager.configure(ConfigurationUtil.toProperties(job));
PigMapReduce.sJobContext = context;
PigMapReduce.sJobConfInternal.set(context.getConfiguration());
PigMapReduce.sJobConf = context.getConfiguration();
inIllustrator = inIllustrator(context);
PigContext.setPackageImportList((ArrayList<String>)ObjectSerializer.deserialize(job.get("udf.import.list")));
pigContext = (PigContext)ObjectSerializer.deserialize(job.get("pig.pigContext"));
if (pigContext.getLog4jProperties()!=null)
PropertyConfigurator.configure(pigContext.getLog4jProperties());
if (mp == null)
mp = (PhysicalPlan) ObjectSerializer.deserialize(
job.get("pig.mapPlan"));
stores = PlanHelper.getStores(mp);
// To be removed
if(mp.isEmpty())
log.debug("Map Plan empty!");
else{
ByteArrayOutputStream baos = new ByteArrayOutputStream();
mp.explain(baos);
log.debug(baos.toString());
}
keyType = ((byte[])ObjectSerializer.deserialize(job.get("pig.map.keytype")))[0];
// till here
pigReporter = new ProgressableReporter();
// Get the UDF specific context
MapRedUtil.setupUDFContext(job);
if(!(mp.isEmpty())) {
PigSplit split = (PigSplit)context.getInputSplit();
List<OperatorKey> targetOpKeys = split.getTargetOps();
ArrayList<PhysicalOperator> targetOpsAsList = new ArrayList<PhysicalOperator>();
for (OperatorKey targetKey : targetOpKeys) {
targetOpsAsList.add(mp.getOperator(targetKey));
}
roots = targetOpsAsList.toArray(new PhysicalOperator[1]);
leaf = mp.getLeaves().get(0);
}
PigStatusReporter.setContext(context);
}