本文整理匯總了Java中org.apache.hadoop.io.MapWritable.put方法的典型用法代碼示例。如果您正苦於以下問題:Java MapWritable.put方法的具體用法?Java MapWritable.put怎麽用?Java MapWritable.put使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.io.MapWritable
的用法示例。
在下文中一共展示了MapWritable.put方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: reduce
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
protected void reduce(StatsUserDimension key, Iterable<TimeOutputValue> values, Context context)
throws IOException, InterruptedException {
this.unique.clear();
// 開始計算uuid的個數
for (TimeOutputValue value : values) {
this.unique.add(value.getId());// uid,用戶ID
}
MapWritable map = new MapWritable();// 相當於java中的hashmap
map.put(new IntWritable(-1), new IntWritable(this.unique.size()));
outputValue.setValue(map);
// 設置kpi名稱
String kpiName = key.getStatsCommon().getKpi().getKpiName();
if (KpiType.NEW_INSTALL_USER.name.equals(kpiName)) {
// 計算stats_user表中的新增用戶
outputValue.setKpi(KpiType.NEW_INSTALL_USER);
} else if (KpiType.BROWSER_NEW_INSTALL_USER.name.equals(kpiName)) {
// 計算stats_device_browser表中的新增用戶
outputValue.setKpi(KpiType.BROWSER_NEW_INSTALL_USER);
}
context.write(key, outputValue);
}
示例2: configureGenericRecordExportInputFormat
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
private void configureGenericRecordExportInputFormat(Job job, String tableName)
throws IOException {
ConnManager connManager = context.getConnManager();
Map<String, Integer> columnTypeInts;
if (options.getCall() == null) {
columnTypeInts = connManager.getColumnTypes(
tableName,
options.getSqlQuery());
} else {
columnTypeInts = connManager.getColumnTypesForProcedure(
options.getCall());
}
String[] specifiedColumns = options.getColumns();
MapWritable columnTypes = new MapWritable();
for (Map.Entry<String, Integer> e : columnTypeInts.entrySet()) {
String column = e.getKey();
column = (specifiedColumns == null) ? column : options.getColumnNameCaseInsensitive(column);
if (column != null) {
Text columnName = new Text(column);
Text columnType = new Text(connManager.toJavaType(tableName, column, e.getValue()));
columnTypes.put(columnName, columnType);
}
}
DefaultStringifier.store(job.getConfiguration(), columnTypes,
AvroExportMapper.AVRO_COLUMN_TYPES_MAP);
}
示例3: processTupleViolation
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
private void processTupleViolation(MapWritable fieldMapWritable,
Map<String, Integer> fieldFileViolationsMap, StringBuffer wb,
DataViolationWritableBean fileViolationsWritable, String fileName)
throws IOException {
IntWritable fieldNumber = new IntWritable();
IntWritable fieldViolations = new IntWritable(0);
int violations;
fieldNumber = new IntWritable(fileViolationsWritable.getFieldNumber());
fieldViolations = (IntWritable) fieldMapWritable.get((fieldNumber));
fieldViolations = setFieldViolations(fieldViolations);
fieldMapWritable.put(fieldNumber, fieldViolations);
violations = extractViolationsFromMap(fieldFileViolationsMap, fileName);
violations += 1;
fieldFileViolationsMap.put(fileName, violations);
writeViolationsToBuffer(fileViolationsWritable, fileName, wb, violations);
}
示例4: map
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
public void map(LongWritable key, Text value, Mapper.Context context) throws IOException, InterruptedException {
TrecOLParser document = new TrecOLParser(value.toString());
documentAnalyzed = new MapWritable();
if (document.isParsed()) {
this.tokenizer.tokenize(document.getDocContent());
while (this.tokenizer.hasMoreTokens()) {
IntWritable counter = CastingTypes.zero;
String newTerm = this.tokenizer.nextToken();
Text term = new Text(newTerm);
if (documentAnalyzed.containsKey(term)) {
counter = CastingTypes.strToIntWr(documentAnalyzed.get(term).toString());
}
documentAnalyzed.put(term, CastingTypes.intToIntWr(counter.get()+1));
}
if ( ! documentAnalyzed.isEmpty()) {
context.write(CastingTypes.strToIntWr(document.getDocId()), documentAnalyzed);
}
}
}
示例5: map
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
String prefix = conf.get("prefix");
MapWritable doc = new MapWritable();
String[] line = value.toString().split(",");
doc.put(new Text(prefix+"Id"),new Text(line[1]+"-"+line[2]+"-"+line[0]));
doc.put(new Text(prefix+"SiteName"), new Text(line[1]));
doc.put(new Text(prefix+"RoomName"), new Text(line[2]));
doc.put(new Text(prefix+"Fecha"), new Text(line[3].replace(' ','T')));
doc.put(new Text(prefix+"Power"), new FloatWritable(Float.parseFloat(line[4])));
doc.put(new Text(prefix+"Temp"), new FloatWritable(Float.parseFloat(line[5])));
doc.put(new Text(prefix+"Humidity"), new FloatWritable(Float.parseFloat(line[6])));
doc.put(new Text(prefix+"Timestamp"), new Text(line[6].replace(' ','T')));
context.write(NullWritable.get(), doc);
}
示例6: populateMap
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
private void populateMap(SortedMap<ByteBuffer, IColumn> cvalue, MapWritable value)
{
for (Map.Entry<ByteBuffer, IColumn> e : cvalue.entrySet())
{
ByteBuffer k = e.getKey();
IColumn v = e.getValue();
if (!v.isLive()) {
continue;
}
BytesWritable newKey = convertByteBuffer(k);
BytesWritable newValue = convertByteBuffer(v.value());
value.put(newKey, newValue);
}
}
示例7: next
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
/**
* Grabs the next result and process the DynamicTableEntity into a Hive
* friendly MapWriteable
*
* @param key
* The RowID for the entity. Not that this is not really an Azure
* key, since the partition is implicit in the key
* @param value
* A MapWriteable which will be populated with values from the
* DynamicTableEntity returned by the Azure query.
*/
public boolean next(Text key, MapWritable value) throws IOException {
if (!results.hasNext())
return false;
DynamicTableEntity entity = results.next();
key.set(entity.getRowKey());
for (Entry<String, EntityProperty> entry : entity.getProperties()
.entrySet()) {
final EntityProperty property = entry.getValue();
// Note that azure table entity keys are forced to lower case for
// matching with hive column names
final String propertyKey = entry.getKey().toLowerCase();
final String propertyValue = property.getValueAsString();
final Writable writableValue = SERIALIZED_NULL
.equals(propertyValue) ? NullWritable.get() : new Text(
propertyValue);
value.put(new Text(propertyKey), writableValue);
}
pos++;
return true;
}
示例8: configureInputFormat
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
protected void configureInputFormat(Job job, String tableName,
String tableClassName, String splitByCol)
throws ClassNotFoundException, IOException {
fileType = getInputFileType();
super.configureInputFormat(job, tableName, tableClassName, splitByCol);
if (fileType == FileType.AVRO_DATA_FILE) {
LOG.debug("Configuring for Avro export");
ConnManager connManager = context.getConnManager();
Map<String, Integer> columnTypeInts =
connManager.getColumnTypes(tableName, options.getSqlQuery());
MapWritable columnTypes = new MapWritable();
for (Map.Entry<String, Integer> e : columnTypeInts.entrySet()) {
Text columnName = new Text(e.getKey());
Text columnText = new Text(
connManager.toJavaType(tableName, e.getKey(), e.getValue()));
columnTypes.put(columnName, columnText);
}
DefaultStringifier.store(job.getConfiguration(), columnTypes,
AvroExportMapper.AVRO_COLUMN_TYPES_MAP);
}
}
示例9: reduce
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
public void reduce(Text key, Iterable<MapWritable> listOfMaps, Context context) throws IOException, InterruptedException {
for (MapWritable partialResultMap : listOfMaps) {
for (Writable attributeText : partialResultMap.keySet()) {
MapWritable partialInsideMap = (MapWritable) partialResultMap.get(attributeText);
MapWritable partialOutputMap = new MapWritable();
for (Writable rule : partialInsideMap.keySet()) {
Text regola = (Text) rule;
Text valore = (Text) partialInsideMap.get(rule);
partialOutputMap.put(new Text(regola.toString()), new Text(valore.toString()));
}
result.put((Text)attributeText, partialOutputMap);
}
}
Text resultWrite = new Text(MapWritableConverter.toJsonText(result));
context.write(key,resultWrite);
}
示例10: reduce
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
public void reduce(Text key, Iterable<MapWritable> listOfMaps, Context context) throws IOException, InterruptedException {
for (MapWritable partialResultMap : listOfMaps) {
for (Writable attributeText : partialResultMap.keySet()) {
MapWritable partialInsideMap = (MapWritable) partialResultMap.get(attributeText);
MapWritable partialOutputMap = new MapWritable();
for (Writable rule : partialInsideMap.keySet()) {
Text regola = (Text) rule;
Text valore = (Text) partialInsideMap.get(rule);
partialOutputMap.put(new Text(regola.toString()), new Text(valore.toString()));
}
result.put((Text)attributeText, partialOutputMap);
}
}
context.write(key,result);
}
示例11: map
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String text = value.toString().replaceAll("(\\r|\\n|\\r\\n)+", "\\s");
String[] values = text.split("\\s");
for (String v : values) {
MapWritable doc = new MapWritable();
doc.put(new Text("word"), new Text(v));
context.write(NullWritable.get(), doc);
}
}
示例12: writeProperties
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
public static final void writeProperties(DataOutput out, Properties props) throws IOException {
MapWritable propsWritable = new MapWritable();
for (Entry<Object, Object> prop : props.entrySet()) {
Writable key = new Text(prop.getKey().toString());
Writable value = new Text(prop.getValue().toString());
propsWritable.put(key,value);
}
propsWritable.write(out);
}
示例13: testMapFieldExtractorNested
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Test
public void testMapFieldExtractorNested() throws Exception {
ConstantFieldExtractor cfe = new MapWritableFieldExtractor();
Map<Writable, Writable> m = new MapWritable();
MapWritable nested = new MapWritable();
nested.put(new Text("bar"), new Text("found"));
m.put(new Text("foo"), nested);
assertEquals(new Text("found"), extract(cfe, "foo.bar", m));
}
示例14: regionServerStartup
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
public MapWritable regionServerStartup(final int port,
final long serverStartCode, final long serverCurrentTime)
throws IOException {
// Register with server manager
InetAddress ia = HBaseServer.getRemoteIp();
ServerName rs = this.serverManager.regionServerStartup(ia, port,
serverStartCode, serverCurrentTime);
// Send back some config info
MapWritable mw = createConfigurationSubset();
mw.put(new Text(HConstants.KEY_FOR_HOSTNAME_SEEN_BY_MASTER),
new Text(rs.getHostname()));
return mw;
}
示例15: getCurrentValue
import org.apache.hadoop.io.MapWritable; //導入方法依賴的package包/類
@Override
public MapWritable getCurrentValue() throws IOException, InterruptedException {
MapWritable mapWritable = new MapWritable();
mapWritable.put(new Text("tag"), new Text(datalinks.get(recordName)));
mapWritable.put(new Text("record"), new Text(files[index].getPath().toString()));
return mapWritable;
}